![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordon | GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 4413 | . 2 ⊢ Tr On | |
2 | df-on 4399 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 2 | abeq2i 2304 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordtr 4409 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
5 | 3, 4 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
6 | 5 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
7 | dford3 4398 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
8 | 1, 6, 7 | mpbir2an 944 | 1 ⊢ Ord On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∀wral 2472 Tr wtr 4127 Ord word 4393 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 |
This theorem is referenced by: ssorduni 4519 limon 4545 onprc 4584 tfri1dALT 6404 rdgon 6439 |
Copyright terms: Public domain | W3C validator |