ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon GIF version

Theorem ordon 4362
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4264 . 2 Tr On
2 df-on 4250 . . . . 5 On = {𝑥 ∣ Ord 𝑥}
32abeq2i 2225 . . . 4 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordtr 4260 . . . 4 (Ord 𝑥 → Tr 𝑥)
53, 4sylbi 120 . . 3 (𝑥 ∈ On → Tr 𝑥)
65rgen 2459 . 2 𝑥 ∈ On Tr 𝑥
7 dford3 4249 . 2 (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥))
81, 6, 7mpbir2an 909 1 Ord On
Colors of variables: wff set class
Syntax hints:  wcel 1463  wral 2390  Tr wtr 3986  Ord word 4244  Oncon0 4245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-in 3043  df-ss 3050  df-uni 3703  df-tr 3987  df-iord 4248  df-on 4250
This theorem is referenced by:  ssorduni  4363  limon  4389  onprc  4427  tfri1dALT  6202  rdgon  6237
  Copyright terms: Public domain W3C validator