ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon GIF version

Theorem ordon 4539
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4434 . 2 Tr On
2 df-on 4420 . . . . 5 On = {𝑥 ∣ Ord 𝑥}
32abeq2i 2317 . . . 4 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordtr 4430 . . . 4 (Ord 𝑥 → Tr 𝑥)
53, 4sylbi 121 . . 3 (𝑥 ∈ On → Tr 𝑥)
65rgen 2560 . 2 𝑥 ∈ On Tr 𝑥
7 dford3 4419 . 2 (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥))
81, 6, 7mpbir2an 945 1 Ord On
Colors of variables: wff set class
Syntax hints:  wcel 2177  wral 2485  Tr wtr 4147  Ord word 4414  Oncon0 4415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3174  df-ss 3181  df-uni 3854  df-tr 4148  df-iord 4418  df-on 4420
This theorem is referenced by:  ssorduni  4540  limon  4566  onprc  4605  tfri1dALT  6447  rdgon  6482
  Copyright terms: Public domain W3C validator