![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordon | GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 4264 | . 2 ⊢ Tr On | |
2 | df-on 4250 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 2 | abeq2i 2225 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordtr 4260 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
5 | 3, 4 | sylbi 120 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
6 | 5 | rgen 2459 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
7 | dford3 4249 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
8 | 1, 6, 7 | mpbir2an 909 | 1 ⊢ Ord On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1463 ∀wral 2390 Tr wtr 3986 Ord word 4244 Oncon0 4245 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-in 3043 df-ss 3050 df-uni 3703 df-tr 3987 df-iord 4248 df-on 4250 |
This theorem is referenced by: ssorduni 4363 limon 4389 onprc 4427 tfri1dALT 6202 rdgon 6237 |
Copyright terms: Public domain | W3C validator |