ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon GIF version

Theorem ordon 4463
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4360 . 2 Tr On
2 df-on 4346 . . . . 5 On = {𝑥 ∣ Ord 𝑥}
32abeq2i 2277 . . . 4 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordtr 4356 . . . 4 (Ord 𝑥 → Tr 𝑥)
53, 4sylbi 120 . . 3 (𝑥 ∈ On → Tr 𝑥)
65rgen 2519 . 2 𝑥 ∈ On Tr 𝑥
7 dford3 4345 . 2 (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥))
81, 6, 7mpbir2an 932 1 Ord On
Colors of variables: wff set class
Syntax hints:  wcel 2136  wral 2444  Tr wtr 4080  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  ssorduni  4464  limon  4490  onprc  4529  tfri1dALT  6319  rdgon  6354
  Copyright terms: Public domain W3C validator