ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon GIF version

Theorem ordon 4575
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4470 . 2 Tr On
2 df-on 4456 . . . . 5 On = {𝑥 ∣ Ord 𝑥}
32abeq2i 2340 . . . 4 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordtr 4466 . . . 4 (Ord 𝑥 → Tr 𝑥)
53, 4sylbi 121 . . 3 (𝑥 ∈ On → Tr 𝑥)
65rgen 2583 . 2 𝑥 ∈ On Tr 𝑥
7 dford3 4455 . 2 (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥))
81, 6, 7mpbir2an 948 1 Ord On
Colors of variables: wff set class
Syntax hints:  wcel 2200  wral 2508  Tr wtr 4181  Ord word 4450  Oncon0 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456
This theorem is referenced by:  ssorduni  4576  limon  4602  onprc  4641  tfri1dALT  6487  rdgon  6522
  Copyright terms: Public domain W3C validator