ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon GIF version

Theorem ordon 4522
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4417 . 2 Tr On
2 df-on 4403 . . . . 5 On = {𝑥 ∣ Ord 𝑥}
32abeq2i 2307 . . . 4 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordtr 4413 . . . 4 (Ord 𝑥 → Tr 𝑥)
53, 4sylbi 121 . . 3 (𝑥 ∈ On → Tr 𝑥)
65rgen 2550 . 2 𝑥 ∈ On Tr 𝑥
7 dford3 4402 . 2 (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥))
81, 6, 7mpbir2an 944 1 Ord On
Colors of variables: wff set class
Syntax hints:  wcel 2167  wral 2475  Tr wtr 4131  Ord word 4397  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  ssorduni  4523  limon  4549  onprc  4588  tfri1dALT  6409  rdgon  6444
  Copyright terms: Public domain W3C validator