| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordon | GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 4434 | . 2 ⊢ Tr On | |
| 2 | df-on 4420 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 2 | abeq2i 2317 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordtr 4430 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
| 5 | 3, 4 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
| 6 | 5 | rgen 2560 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
| 7 | dford3 4419 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
| 8 | 1, 6, 7 | mpbir2an 945 | 1 ⊢ Ord On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∀wral 2485 Tr wtr 4147 Ord word 4414 Oncon0 4415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 |
| This theorem is referenced by: ssorduni 4540 limon 4566 onprc 4605 tfri1dALT 6447 rdgon 6482 |
| Copyright terms: Public domain | W3C validator |