| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordon | GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 4418 | . 2 ⊢ Tr On | |
| 2 | df-on 4404 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 2 | abeq2i 2307 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordtr 4414 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
| 5 | 3, 4 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
| 6 | 5 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
| 7 | dford3 4403 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
| 8 | 1, 6, 7 | mpbir2an 944 | 1 ⊢ Ord On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∀wral 2475 Tr wtr 4132 Ord word 4398 Oncon0 4399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 |
| This theorem is referenced by: ssorduni 4524 limon 4550 onprc 4589 tfri1dALT 6418 rdgon 6453 |
| Copyright terms: Public domain | W3C validator |