| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordon | GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 4470 | . 2 ⊢ Tr On | |
| 2 | df-on 4456 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 2 | abeq2i 2340 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordtr 4466 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
| 5 | 3, 4 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
| 6 | 5 | rgen 2583 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
| 7 | dford3 4455 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
| 8 | 1, 6, 7 | mpbir2an 948 | 1 ⊢ Ord On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∀wral 2508 Tr wtr 4181 Ord word 4450 Oncon0 4451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 |
| This theorem is referenced by: ssorduni 4576 limon 4602 onprc 4641 tfri1dALT 6487 rdgon 6522 |
| Copyright terms: Public domain | W3C validator |