Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordon | GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 4360 | . 2 ⊢ Tr On | |
2 | df-on 4346 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 2 | abeq2i 2277 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordtr 4356 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
5 | 3, 4 | sylbi 120 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
6 | 5 | rgen 2519 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
7 | dford3 4345 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
8 | 1, 6, 7 | mpbir2an 932 | 1 ⊢ Ord On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∀wral 2444 Tr wtr 4080 Ord word 4340 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: ssorduni 4464 limon 4490 onprc 4529 tfri1dALT 6319 rdgon 6354 |
Copyright terms: Public domain | W3C validator |