Proof of Theorem onintonm
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ssel 3177 | 
. . . . . . 7
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) | 
| 2 |   | eloni 4410 | 
. . . . . . . 8
⊢ (𝑥 ∈ On → Ord 𝑥) | 
| 3 |   | ordtr 4413 | 
. . . . . . . 8
⊢ (Ord
𝑥 → Tr 𝑥) | 
| 4 | 2, 3 | syl 14 | 
. . . . . . 7
⊢ (𝑥 ∈ On → Tr 𝑥) | 
| 5 | 1, 4 | syl6 33 | 
. . . . . 6
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → Tr 𝑥)) | 
| 6 | 5 | ralrimiv 2569 | 
. . . . 5
⊢ (𝐴 ⊆ On → ∀𝑥 ∈ 𝐴 Tr 𝑥) | 
| 7 |   | trint 4146 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → Tr ∩ 𝐴) | 
| 8 | 6, 7 | syl 14 | 
. . . 4
⊢ (𝐴 ⊆ On → Tr ∩ 𝐴) | 
| 9 | 8 | adantr 276 | 
. . 3
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → Tr ∩
𝐴) | 
| 10 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥 𝐴 ⊆ On | 
| 11 |   | nfe1 1510 | 
. . . . 5
⊢
Ⅎ𝑥∃𝑥 𝑥 ∈ 𝐴 | 
| 12 | 10, 11 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑥(𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) | 
| 13 |   | intssuni2m 3898 | 
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ ∪ On) | 
| 14 |   | unon 4547 | 
. . . . . . . 8
⊢ ∪ On = On | 
| 15 | 13, 14 | sseqtrdi 3231 | 
. . . . . . 7
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ On) | 
| 16 | 15 | sseld 3182 | 
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → (𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ On)) | 
| 17 | 16, 2 | syl6 33 | 
. . . . 5
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → (𝑥 ∈ ∩ 𝐴 → Ord 𝑥)) | 
| 18 | 17, 3 | syl6 33 | 
. . . 4
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → (𝑥 ∈ ∩ 𝐴 → Tr 𝑥)) | 
| 19 | 12, 18 | ralrimi 2568 | 
. . 3
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∀𝑥 ∈ ∩ 𝐴Tr 𝑥) | 
| 20 |   | dford3 4402 | 
. . 3
⊢ (Ord
∩ 𝐴 ↔ (Tr ∩
𝐴 ∧ ∀𝑥 ∈ ∩ 𝐴Tr
𝑥)) | 
| 21 | 9, 19, 20 | sylanbrc 417 | 
. 2
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → Ord ∩
𝐴) | 
| 22 |   | inteximm 4182 | 
. . . 4
⊢
(∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) | 
| 23 | 22 | adantl 277 | 
. . 3
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ∈ V) | 
| 24 |   | elong 4408 | 
. . 3
⊢ (∩ 𝐴
∈ V → (∩ 𝐴 ∈ On ↔ Ord ∩ 𝐴)) | 
| 25 | 23, 24 | syl 14 | 
. 2
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → (∩ 𝐴 ∈ On ↔ Ord ∩ 𝐴)) | 
| 26 | 21, 25 | mpbird 167 | 
1
⊢ ((𝐴 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ∈ On) |