ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm GIF version

Theorem onintonm 4494
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3136 . . . . . . 7 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
2 eloni 4353 . . . . . . . 8 (𝑥 ∈ On → Ord 𝑥)
3 ordtr 4356 . . . . . . . 8 (Ord 𝑥 → Tr 𝑥)
42, 3syl 14 . . . . . . 7 (𝑥 ∈ On → Tr 𝑥)
51, 4syl6 33 . . . . . 6 (𝐴 ⊆ On → (𝑥𝐴 → Tr 𝑥))
65ralrimiv 2538 . . . . 5 (𝐴 ⊆ On → ∀𝑥𝐴 Tr 𝑥)
7 trint 4095 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
86, 7syl 14 . . . 4 (𝐴 ⊆ On → Tr 𝐴)
98adantr 274 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Tr 𝐴)
10 nfv 1516 . . . . 5 𝑥 𝐴 ⊆ On
11 nfe1 1484 . . . . 5 𝑥𝑥 𝑥𝐴
1210, 11nfan 1553 . . . 4 𝑥(𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴)
13 intssuni2m 3848 . . . . . . . 8 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 On)
14 unon 4488 . . . . . . . 8 On = On
1513, 14sseqtrdi 3190 . . . . . . 7 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ⊆ On)
1615sseld 3141 . . . . . 6 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴𝑥 ∈ On))
1716, 2syl6 33 . . . . 5 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Ord 𝑥))
1817, 3syl6 33 . . . 4 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Tr 𝑥))
1912, 18ralrimi 2537 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ∀𝑥 𝐴Tr 𝑥)
20 dford3 4345 . . 3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴Tr 𝑥))
219, 19, 20sylanbrc 414 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Ord 𝐴)
22 inteximm 4128 . . . 4 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
2322adantl 275 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
24 elong 4351 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
2523, 24syl 14 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ( 𝐴 ∈ On ↔ Ord 𝐴))
2621, 25mpbird 166 1 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1480  wcel 2136  wral 2444  Vcvv 2726  wss 3116   cuni 3789   cint 3824  Tr wtr 4080  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349
This theorem is referenced by:  onintrab2im  4495
  Copyright terms: Public domain W3C validator