ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm GIF version

Theorem onintonm 4441
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3096 . . . . . . 7 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
2 eloni 4305 . . . . . . . 8 (𝑥 ∈ On → Ord 𝑥)
3 ordtr 4308 . . . . . . . 8 (Ord 𝑥 → Tr 𝑥)
42, 3syl 14 . . . . . . 7 (𝑥 ∈ On → Tr 𝑥)
51, 4syl6 33 . . . . . 6 (𝐴 ⊆ On → (𝑥𝐴 → Tr 𝑥))
65ralrimiv 2507 . . . . 5 (𝐴 ⊆ On → ∀𝑥𝐴 Tr 𝑥)
7 trint 4049 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
86, 7syl 14 . . . 4 (𝐴 ⊆ On → Tr 𝐴)
98adantr 274 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Tr 𝐴)
10 nfv 1509 . . . . 5 𝑥 𝐴 ⊆ On
11 nfe1 1473 . . . . 5 𝑥𝑥 𝑥𝐴
1210, 11nfan 1545 . . . 4 𝑥(𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴)
13 intssuni2m 3803 . . . . . . . 8 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 On)
14 unon 4435 . . . . . . . 8 On = On
1513, 14sseqtrdi 3150 . . . . . . 7 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ⊆ On)
1615sseld 3101 . . . . . 6 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴𝑥 ∈ On))
1716, 2syl6 33 . . . . 5 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Ord 𝑥))
1817, 3syl6 33 . . . 4 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Tr 𝑥))
1912, 18ralrimi 2506 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ∀𝑥 𝐴Tr 𝑥)
20 dford3 4297 . . 3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴Tr 𝑥))
219, 19, 20sylanbrc 414 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Ord 𝐴)
22 inteximm 4082 . . . 4 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
2322adantl 275 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
24 elong 4303 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
2523, 24syl 14 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ( 𝐴 ∈ On ↔ Ord 𝐴))
2621, 25mpbird 166 1 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1469  wcel 1481  wral 2417  Vcvv 2689  wss 3076   cuni 3744   cint 3779  Tr wtr 4034  Ord word 4292  Oncon0 4293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301
This theorem is referenced by:  onintrab2im  4442
  Copyright terms: Public domain W3C validator