ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm GIF version

Theorem onintonm 4549
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3173 . . . . . . 7 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
2 eloni 4406 . . . . . . . 8 (𝑥 ∈ On → Ord 𝑥)
3 ordtr 4409 . . . . . . . 8 (Ord 𝑥 → Tr 𝑥)
42, 3syl 14 . . . . . . 7 (𝑥 ∈ On → Tr 𝑥)
51, 4syl6 33 . . . . . 6 (𝐴 ⊆ On → (𝑥𝐴 → Tr 𝑥))
65ralrimiv 2566 . . . . 5 (𝐴 ⊆ On → ∀𝑥𝐴 Tr 𝑥)
7 trint 4142 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
86, 7syl 14 . . . 4 (𝐴 ⊆ On → Tr 𝐴)
98adantr 276 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Tr 𝐴)
10 nfv 1539 . . . . 5 𝑥 𝐴 ⊆ On
11 nfe1 1507 . . . . 5 𝑥𝑥 𝑥𝐴
1210, 11nfan 1576 . . . 4 𝑥(𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴)
13 intssuni2m 3894 . . . . . . . 8 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 On)
14 unon 4543 . . . . . . . 8 On = On
1513, 14sseqtrdi 3227 . . . . . . 7 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ⊆ On)
1615sseld 3178 . . . . . 6 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴𝑥 ∈ On))
1716, 2syl6 33 . . . . 5 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Ord 𝑥))
1817, 3syl6 33 . . . 4 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Tr 𝑥))
1912, 18ralrimi 2565 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ∀𝑥 𝐴Tr 𝑥)
20 dford3 4398 . . 3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴Tr 𝑥))
219, 19, 20sylanbrc 417 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Ord 𝐴)
22 inteximm 4178 . . . 4 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
2322adantl 277 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
24 elong 4404 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
2523, 24syl 14 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ( 𝐴 ∈ On ↔ Ord 𝐴))
2621, 25mpbird 167 1 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1503  wcel 2164  wral 2472  Vcvv 2760  wss 3153   cuni 3835   cint 3870  Tr wtr 4127  Ord word 4393  Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  onintrab2im  4550
  Copyright terms: Public domain W3C validator