ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm GIF version

Theorem onintonm 4518
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3151 . . . . . . 7 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
2 eloni 4377 . . . . . . . 8 (𝑥 ∈ On → Ord 𝑥)
3 ordtr 4380 . . . . . . . 8 (Ord 𝑥 → Tr 𝑥)
42, 3syl 14 . . . . . . 7 (𝑥 ∈ On → Tr 𝑥)
51, 4syl6 33 . . . . . 6 (𝐴 ⊆ On → (𝑥𝐴 → Tr 𝑥))
65ralrimiv 2549 . . . . 5 (𝐴 ⊆ On → ∀𝑥𝐴 Tr 𝑥)
7 trint 4118 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
86, 7syl 14 . . . 4 (𝐴 ⊆ On → Tr 𝐴)
98adantr 276 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Tr 𝐴)
10 nfv 1528 . . . . 5 𝑥 𝐴 ⊆ On
11 nfe1 1496 . . . . 5 𝑥𝑥 𝑥𝐴
1210, 11nfan 1565 . . . 4 𝑥(𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴)
13 intssuni2m 3870 . . . . . . . 8 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 On)
14 unon 4512 . . . . . . . 8 On = On
1513, 14sseqtrdi 3205 . . . . . . 7 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ⊆ On)
1615sseld 3156 . . . . . 6 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴𝑥 ∈ On))
1716, 2syl6 33 . . . . 5 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Ord 𝑥))
1817, 3syl6 33 . . . 4 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → (𝑥 𝐴 → Tr 𝑥))
1912, 18ralrimi 2548 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ∀𝑥 𝐴Tr 𝑥)
20 dford3 4369 . . 3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴Tr 𝑥))
219, 19, 20sylanbrc 417 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → Ord 𝐴)
22 inteximm 4151 . . . 4 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
2322adantl 277 . . 3 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
24 elong 4375 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
2523, 24syl 14 . 2 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → ( 𝐴 ∈ On ↔ Ord 𝐴))
2621, 25mpbird 167 1 ((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1492  wcel 2148  wral 2455  Vcvv 2739  wss 3131   cuni 3811   cint 3846  Tr wtr 4103  Ord word 4364  Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373
This theorem is referenced by:  onintrab2im  4519
  Copyright terms: Public domain W3C validator