Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omord GIF version

Theorem bj-omord 15606
Description: The set ω is an ordinal class. Constructive proof of ordom 4643. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omord Ord ω

Proof of Theorem bj-omord
StepHypRef Expression
1 bj-omtrans2 15603 . 2 Tr ω
2 bj-nntrans2 15598 . . 3 (𝑥 ∈ ω → Tr 𝑥)
32rgen 2550 . 2 𝑥 ∈ ω Tr 𝑥
4 dford3 4402 . 2 (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥))
51, 3, 4mpbir2an 944 1 Ord ω
Colors of variables: wff set class
Syntax hints:  wral 2475  Tr wtr 4131  Ord word 4397  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdal 15464  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530  ax-infvn 15587
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-suc 4406  df-iom 4627  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by:  bj-omelon  15607
  Copyright terms: Public domain W3C validator