| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnord | GIF version | ||
| Description: A natural number is an ordinal class. Constructive proof of nnord 4648. Can also be proved from bj-nnelon 15605 if the latter is proved from bj-omssonALT 15609. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nntrans2 15598 | . 2 ⊢ (𝐴 ∈ ω → Tr 𝐴) | |
| 2 | bj-omtrans 15602 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
| 3 | 2 | sseld 3182 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
| 4 | bj-nntrans2 15598 | . . . . 5 ⊢ (𝑥 ∈ ω → Tr 𝑥) | |
| 5 | 3, 4 | syl6 33 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 6 | 5 | alrimiv 1888 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 7 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
| 8 | 6, 7 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
| 9 | dford3 4402 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 10 | 1, 8, 9 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 Tr wtr 4131 Ord word 4397 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 ax-infvn 15587 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 |
| This theorem is referenced by: bj-nnelon 15605 |
| Copyright terms: Public domain | W3C validator |