| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnord | GIF version | ||
| Description: A natural number is an ordinal class. Constructive proof of nnord 4704. Can also be proved from bj-nnelon 16322 if the latter is proved from bj-omssonALT 16326. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nntrans2 16315 | . 2 ⊢ (𝐴 ∈ ω → Tr 𝐴) | |
| 2 | bj-omtrans 16319 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
| 3 | 2 | sseld 3223 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
| 4 | bj-nntrans2 16315 | . . . . 5 ⊢ (𝑥 ∈ ω → Tr 𝑥) | |
| 5 | 3, 4 | syl6 33 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 6 | 5 | alrimiv 1920 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 7 | df-ral 2513 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
| 8 | 6, 7 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
| 9 | dford3 4458 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 10 | 1, 8, 9 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 Tr wtr 4182 Ord word 4453 ωcom 4682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdal 16181 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-infvn 16304 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-nnelon 16322 |
| Copyright terms: Public domain | W3C validator |