![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnord | GIF version |
Description: A natural number is an ordinal class. Constructive proof of nnord 4613. Can also be proved from bj-nnelon 14796 if the latter is proved from bj-omssonALT 14800. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nntrans2 14789 | . 2 ⊢ (𝐴 ∈ ω → Tr 𝐴) | |
2 | bj-omtrans 14793 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
3 | 2 | sseld 3156 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
4 | bj-nntrans2 14789 | . . . . 5 ⊢ (𝑥 ∈ ω → Tr 𝑥) | |
5 | 3, 4 | syl6 33 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → Tr 𝑥)) |
6 | 5 | alrimiv 1874 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) |
7 | df-ral 2460 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
8 | 6, 7 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
9 | dford3 4369 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
10 | 1, 8, 9 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∈ wcel 2148 ∀wral 2455 Tr wtr 4103 Ord word 4364 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-bd0 14650 ax-bdor 14653 ax-bdal 14655 ax-bdex 14656 ax-bdeq 14657 ax-bdel 14658 ax-bdsb 14659 ax-bdsep 14721 ax-infvn 14778 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-suc 4373 df-iom 4592 df-bdc 14678 df-bj-ind 14764 |
This theorem is referenced by: bj-nnelon 14796 |
Copyright terms: Public domain | W3C validator |