| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnord | GIF version | ||
| Description: A natural number is an ordinal class. Constructive proof of nnord 4661. Can also be proved from bj-nnelon 15932 if the latter is proved from bj-omssonALT 15936. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nntrans2 15925 | . 2 ⊢ (𝐴 ∈ ω → Tr 𝐴) | |
| 2 | bj-omtrans 15929 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
| 3 | 2 | sseld 3192 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
| 4 | bj-nntrans2 15925 | . . . . 5 ⊢ (𝑥 ∈ ω → Tr 𝑥) | |
| 5 | 3, 4 | syl6 33 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 6 | 5 | alrimiv 1897 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 7 | df-ral 2489 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
| 8 | 6, 7 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
| 9 | dford3 4415 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 10 | 1, 8, 9 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∈ wcel 2176 ∀wral 2484 Tr wtr 4143 Ord word 4410 ωcom 4639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4171 ax-pr 4254 ax-un 4481 ax-bd0 15786 ax-bdor 15789 ax-bdal 15791 ax-bdex 15792 ax-bdeq 15793 ax-bdel 15794 ax-bdsb 15795 ax-bdsep 15857 ax-infvn 15914 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-suc 4419 df-iom 4640 df-bdc 15814 df-bj-ind 15900 |
| This theorem is referenced by: bj-nnelon 15932 |
| Copyright terms: Public domain | W3C validator |