Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnord GIF version

Theorem bj-nnord 15931
Description: A natural number is an ordinal class. Constructive proof of nnord 4661. Can also be proved from bj-nnelon 15932 if the latter is proved from bj-omssonALT 15936. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnord (𝐴 ∈ ω → Ord 𝐴)

Proof of Theorem bj-nnord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans2 15925 . 2 (𝐴 ∈ ω → Tr 𝐴)
2 bj-omtrans 15929 . . . . . 6 (𝐴 ∈ ω → 𝐴 ⊆ ω)
32sseld 3192 . . . . 5 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
4 bj-nntrans2 15925 . . . . 5 (𝑥 ∈ ω → Tr 𝑥)
53, 4syl6 33 . . . 4 (𝐴 ∈ ω → (𝑥𝐴 → Tr 𝑥))
65alrimiv 1897 . . 3 (𝐴 ∈ ω → ∀𝑥(𝑥𝐴 → Tr 𝑥))
7 df-ral 2489 . . 3 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
86, 7sylibr 134 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 Tr 𝑥)
9 dford3 4415 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
101, 8, 9sylanbrc 417 1 (𝐴 ∈ ω → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wcel 2176  wral 2484  Tr wtr 4143  Ord word 4410  ωcom 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4171  ax-pr 4254  ax-un 4481  ax-bd0 15786  ax-bdor 15789  ax-bdal 15791  ax-bdex 15792  ax-bdeq 15793  ax-bdel 15794  ax-bdsb 15795  ax-bdsep 15857  ax-infvn 15914
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4144  df-iord 4414  df-suc 4419  df-iom 4640  df-bdc 15814  df-bj-ind 15900
This theorem is referenced by:  bj-nnelon  15932
  Copyright terms: Public domain W3C validator