Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnord GIF version

Theorem bj-nnord 16321
Description: A natural number is an ordinal class. Constructive proof of nnord 4704. Can also be proved from bj-nnelon 16322 if the latter is proved from bj-omssonALT 16326. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnord (𝐴 ∈ ω → Ord 𝐴)

Proof of Theorem bj-nnord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans2 16315 . 2 (𝐴 ∈ ω → Tr 𝐴)
2 bj-omtrans 16319 . . . . . 6 (𝐴 ∈ ω → 𝐴 ⊆ ω)
32sseld 3223 . . . . 5 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
4 bj-nntrans2 16315 . . . . 5 (𝑥 ∈ ω → Tr 𝑥)
53, 4syl6 33 . . . 4 (𝐴 ∈ ω → (𝑥𝐴 → Tr 𝑥))
65alrimiv 1920 . . 3 (𝐴 ∈ ω → ∀𝑥(𝑥𝐴 → Tr 𝑥))
7 df-ral 2513 . . 3 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
86, 7sylibr 134 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 Tr 𝑥)
9 dford3 4458 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
101, 8, 9sylanbrc 417 1 (𝐴 ∈ ω → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wcel 2200  wral 2508  Tr wtr 4182  Ord word 4453  ωcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4210  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdor 16179  ax-bdal 16181  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247  ax-infvn 16304
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-suc 4462  df-iom 4683  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by:  bj-nnelon  16322
  Copyright terms: Public domain W3C validator