ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on GIF version

Theorem pw1on 7182
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on 𝒫 1o ∈ On

Proof of Theorem pw1on
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6397 . . . . . 6 1o = {∅}
2 elsni 3594 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0elpw 4143 . . . . . . . 8 ∅ ∈ 𝒫 1o
42, 3eqeltrdi 2257 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o)
54ssriv 3146 . . . . . 6 {∅} ⊆ 𝒫 1o
61, 5eqsstri 3174 . . . . 5 1o ⊆ 𝒫 1o
7 sspwb 4194 . . . . 5 (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
86, 7mpbi 144 . . . 4 𝒫 1o ⊆ 𝒫 𝒫 1o
9 dftr4 4085 . . . 4 (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
108, 9mpbir 145 . . 3 Tr 𝒫 1o
11 elpwi 3568 . . . . . . . . 9 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
1211sselda 3142 . . . . . . . 8 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 ∈ 1o)
13 el1o 6405 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
1412, 13sylib 121 . . . . . . 7 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 = ∅)
15 0ss 3447 . . . . . . 7 ∅ ⊆ 𝑥
1614, 15eqsstrdi 3194 . . . . . 6 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦𝑥)
1716ralrimiva 2539 . . . . 5 (𝑥 ∈ 𝒫 1o → ∀𝑦𝑥 𝑦𝑥)
18 dftr3 4084 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
1917, 18sylibr 133 . . . 4 (𝑥 ∈ 𝒫 1o → Tr 𝑥)
2019rgen 2519 . . 3 𝑥 ∈ 𝒫 1oTr 𝑥
21 dford3 4345 . . 3 (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥))
2210, 20, 21mpbir2an 932 . 2 Ord 𝒫 1o
23 1oex 6392 . . 3 1o ∈ V
2423pwex 4162 . 2 𝒫 1o ∈ V
25 elon2 4354 . 2 (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V))
2622, 24, 25mpbir2an 932 1 𝒫 1o ∈ On
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116  c0 3409  𝒫 cpw 3559  {csn 3576  Tr wtr 4080  Ord word 4340  Oncon0 4341  1oc1o 6377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-1o 6384
This theorem is referenced by:  pw1ne1  7185  sucpw1nss3  7191  onntri35  7193  onntri45  7197
  Copyright terms: Public domain W3C validator