ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on GIF version

Theorem pw1on 7288
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on 𝒫 1o ∈ On

Proof of Theorem pw1on
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6484 . . . . . 6 1o = {∅}
2 elsni 3637 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0elpw 4194 . . . . . . . 8 ∅ ∈ 𝒫 1o
42, 3eqeltrdi 2284 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o)
54ssriv 3184 . . . . . 6 {∅} ⊆ 𝒫 1o
61, 5eqsstri 3212 . . . . 5 1o ⊆ 𝒫 1o
7 sspwb 4246 . . . . 5 (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
86, 7mpbi 145 . . . 4 𝒫 1o ⊆ 𝒫 𝒫 1o
9 dftr4 4133 . . . 4 (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
108, 9mpbir 146 . . 3 Tr 𝒫 1o
11 elpwi 3611 . . . . . . . . 9 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
1211sselda 3180 . . . . . . . 8 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 ∈ 1o)
13 el1o 6492 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
1412, 13sylib 122 . . . . . . 7 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 = ∅)
15 0ss 3486 . . . . . . 7 ∅ ⊆ 𝑥
1614, 15eqsstrdi 3232 . . . . . 6 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦𝑥)
1716ralrimiva 2567 . . . . 5 (𝑥 ∈ 𝒫 1o → ∀𝑦𝑥 𝑦𝑥)
18 dftr3 4132 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
1917, 18sylibr 134 . . . 4 (𝑥 ∈ 𝒫 1o → Tr 𝑥)
2019rgen 2547 . . 3 𝑥 ∈ 𝒫 1oTr 𝑥
21 dford3 4399 . . 3 (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥))
2210, 20, 21mpbir2an 944 . 2 Ord 𝒫 1o
23 1oex 6479 . . 3 1o ∈ V
2423pwex 4213 . 2 𝒫 1o ∈ V
25 elon2 4408 . 2 (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V))
2622, 24, 25mpbir2an 944 1 𝒫 1o ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  wss 3154  c0 3447  𝒫 cpw 3602  {csn 3619  Tr wtr 4128  Ord word 4394  Oncon0 4395  1oc1o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-tr 4129  df-iord 4398  df-on 4400  df-suc 4403  df-1o 6471
This theorem is referenced by:  pw1ne1  7291  sucpw1nss3  7297  onntri35  7299  onntri45  7303
  Copyright terms: Public domain W3C validator