ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on GIF version

Theorem pw1on 7227
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on 𝒫 1o ∈ On

Proof of Theorem pw1on
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6432 . . . . . 6 1o = {∅}
2 elsni 3612 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0elpw 4166 . . . . . . . 8 ∅ ∈ 𝒫 1o
42, 3eqeltrdi 2268 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o)
54ssriv 3161 . . . . . 6 {∅} ⊆ 𝒫 1o
61, 5eqsstri 3189 . . . . 5 1o ⊆ 𝒫 1o
7 sspwb 4218 . . . . 5 (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
86, 7mpbi 145 . . . 4 𝒫 1o ⊆ 𝒫 𝒫 1o
9 dftr4 4108 . . . 4 (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
108, 9mpbir 146 . . 3 Tr 𝒫 1o
11 elpwi 3586 . . . . . . . . 9 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
1211sselda 3157 . . . . . . . 8 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 ∈ 1o)
13 el1o 6440 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
1412, 13sylib 122 . . . . . . 7 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 = ∅)
15 0ss 3463 . . . . . . 7 ∅ ⊆ 𝑥
1614, 15eqsstrdi 3209 . . . . . 6 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦𝑥)
1716ralrimiva 2550 . . . . 5 (𝑥 ∈ 𝒫 1o → ∀𝑦𝑥 𝑦𝑥)
18 dftr3 4107 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
1917, 18sylibr 134 . . . 4 (𝑥 ∈ 𝒫 1o → Tr 𝑥)
2019rgen 2530 . . 3 𝑥 ∈ 𝒫 1oTr 𝑥
21 dford3 4369 . . 3 (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥))
2210, 20, 21mpbir2an 942 . 2 Ord 𝒫 1o
23 1oex 6427 . . 3 1o ∈ V
2423pwex 4185 . 2 𝒫 1o ∈ V
25 elon2 4378 . 2 (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V))
2622, 24, 25mpbir2an 942 1 𝒫 1o ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739  wss 3131  c0 3424  𝒫 cpw 3577  {csn 3594  Tr wtr 4103  Ord word 4364  Oncon0 4365  1oc1o 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-1o 6419
This theorem is referenced by:  pw1ne1  7230  sucpw1nss3  7236  onntri35  7238  onntri45  7242
  Copyright terms: Public domain W3C validator