| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1on | GIF version | ||
| Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1on | ⊢ 𝒫 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6565 | . . . . . 6 ⊢ 1o = {∅} | |
| 2 | elsni 3684 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 3 | 0elpw 4247 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 1o | |
| 4 | 2, 3 | eqeltrdi 2320 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o) |
| 5 | 4 | ssriv 3228 | . . . . . 6 ⊢ {∅} ⊆ 𝒫 1o |
| 6 | 1, 5 | eqsstri 3256 | . . . . 5 ⊢ 1o ⊆ 𝒫 1o |
| 7 | sspwb 4301 | . . . . 5 ⊢ (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
| 8 | 6, 7 | mpbi 145 | . . . 4 ⊢ 𝒫 1o ⊆ 𝒫 𝒫 1o |
| 9 | dftr4 4186 | . . . 4 ⊢ (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
| 10 | 8, 9 | mpbir 146 | . . 3 ⊢ Tr 𝒫 1o |
| 11 | elpwi 3658 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
| 12 | 11 | sselda 3224 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 1o) |
| 13 | el1o 6573 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 14 | 12, 13 | sylib 122 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 = ∅) |
| 15 | 0ss 3530 | . . . . . . 7 ⊢ ∅ ⊆ 𝑥 | |
| 16 | 14, 15 | eqsstrdi 3276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊆ 𝑥) |
| 17 | 16 | ralrimiva 2603 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
| 18 | dftr3 4185 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | |
| 19 | 17, 18 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → Tr 𝑥) |
| 20 | 19 | rgen 2583 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 1oTr 𝑥 |
| 21 | dford3 4455 | . . 3 ⊢ (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥)) | |
| 22 | 10, 20, 21 | mpbir2an 948 | . 2 ⊢ Ord 𝒫 1o |
| 23 | 1oex 6560 | . . 3 ⊢ 1o ∈ V | |
| 24 | 23 | pwex 4266 | . 2 ⊢ 𝒫 1o ∈ V |
| 25 | elon2 4464 | . 2 ⊢ (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V)) | |
| 26 | 22, 24, 25 | mpbir2an 948 | 1 ⊢ 𝒫 1o ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 Tr wtr 4181 Ord word 4450 Oncon0 4451 1oc1o 6545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 df-suc 4459 df-1o 6552 |
| This theorem is referenced by: pw1ne1 7402 sucpw1nss3 7408 onntri35 7410 onntri45 7414 |
| Copyright terms: Public domain | W3C validator |