![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1on | GIF version |
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
Ref | Expression |
---|---|
pw1on | ⊢ 𝒫 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6482 | . . . . . 6 ⊢ 1o = {∅} | |
2 | elsni 3636 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0elpw 4193 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 1o | |
4 | 2, 3 | eqeltrdi 2284 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o) |
5 | 4 | ssriv 3183 | . . . . . 6 ⊢ {∅} ⊆ 𝒫 1o |
6 | 1, 5 | eqsstri 3211 | . . . . 5 ⊢ 1o ⊆ 𝒫 1o |
7 | sspwb 4245 | . . . . 5 ⊢ (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
8 | 6, 7 | mpbi 145 | . . . 4 ⊢ 𝒫 1o ⊆ 𝒫 𝒫 1o |
9 | dftr4 4132 | . . . 4 ⊢ (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
10 | 8, 9 | mpbir 146 | . . 3 ⊢ Tr 𝒫 1o |
11 | elpwi 3610 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
12 | 11 | sselda 3179 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 1o) |
13 | el1o 6490 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 12, 13 | sylib 122 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 = ∅) |
15 | 0ss 3485 | . . . . . . 7 ⊢ ∅ ⊆ 𝑥 | |
16 | 14, 15 | eqsstrdi 3231 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊆ 𝑥) |
17 | 16 | ralrimiva 2567 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
18 | dftr3 4131 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → Tr 𝑥) |
20 | 19 | rgen 2547 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 1oTr 𝑥 |
21 | dford3 4398 | . . 3 ⊢ (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥)) | |
22 | 10, 20, 21 | mpbir2an 944 | . 2 ⊢ Ord 𝒫 1o |
23 | 1oex 6477 | . . 3 ⊢ 1o ∈ V | |
24 | 23 | pwex 4212 | . 2 ⊢ 𝒫 1o ∈ V |
25 | elon2 4407 | . 2 ⊢ (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V)) | |
26 | 22, 24, 25 | mpbir2an 944 | 1 ⊢ 𝒫 1o ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ⊆ wss 3153 ∅c0 3446 𝒫 cpw 3601 {csn 3618 Tr wtr 4127 Ord word 4393 Oncon0 4394 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 |
This theorem is referenced by: pw1ne1 7289 sucpw1nss3 7295 onntri35 7297 onntri45 7301 |
Copyright terms: Public domain | W3C validator |