ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on GIF version

Theorem pw1on 7293
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on 𝒫 1o ∈ On

Proof of Theorem pw1on
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6487 . . . . . 6 1o = {∅}
2 elsni 3640 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0elpw 4197 . . . . . . . 8 ∅ ∈ 𝒫 1o
42, 3eqeltrdi 2287 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o)
54ssriv 3187 . . . . . 6 {∅} ⊆ 𝒫 1o
61, 5eqsstri 3215 . . . . 5 1o ⊆ 𝒫 1o
7 sspwb 4249 . . . . 5 (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
86, 7mpbi 145 . . . 4 𝒫 1o ⊆ 𝒫 𝒫 1o
9 dftr4 4136 . . . 4 (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
108, 9mpbir 146 . . 3 Tr 𝒫 1o
11 elpwi 3614 . . . . . . . . 9 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
1211sselda 3183 . . . . . . . 8 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 ∈ 1o)
13 el1o 6495 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
1412, 13sylib 122 . . . . . . 7 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 = ∅)
15 0ss 3489 . . . . . . 7 ∅ ⊆ 𝑥
1614, 15eqsstrdi 3235 . . . . . 6 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦𝑥)
1716ralrimiva 2570 . . . . 5 (𝑥 ∈ 𝒫 1o → ∀𝑦𝑥 𝑦𝑥)
18 dftr3 4135 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
1917, 18sylibr 134 . . . 4 (𝑥 ∈ 𝒫 1o → Tr 𝑥)
2019rgen 2550 . . 3 𝑥 ∈ 𝒫 1oTr 𝑥
21 dford3 4402 . . 3 (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥))
2210, 20, 21mpbir2an 944 . 2 Ord 𝒫 1o
23 1oex 6482 . . 3 1o ∈ V
2423pwex 4216 . 2 𝒫 1o ∈ V
25 elon2 4411 . 2 (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V))
2622, 24, 25mpbir2an 944 1 𝒫 1o ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  wss 3157  c0 3450  𝒫 cpw 3605  {csn 3622  Tr wtr 4131  Ord word 4397  Oncon0 4398  1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474
This theorem is referenced by:  pw1ne1  7296  sucpw1nss3  7302  onntri35  7304  onntri45  7308
  Copyright terms: Public domain W3C validator