| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pw1on | GIF version | ||
| Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| pw1on | ⊢ 𝒫 1o ∈ On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1o2 6487 | . . . . . 6 ⊢ 1o = {∅} | |
| 2 | elsni 3640 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 3 | 0elpw 4197 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 1o | |
| 4 | 2, 3 | eqeltrdi 2287 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o) | 
| 5 | 4 | ssriv 3187 | . . . . . 6 ⊢ {∅} ⊆ 𝒫 1o | 
| 6 | 1, 5 | eqsstri 3215 | . . . . 5 ⊢ 1o ⊆ 𝒫 1o | 
| 7 | sspwb 4249 | . . . . 5 ⊢ (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
| 8 | 6, 7 | mpbi 145 | . . . 4 ⊢ 𝒫 1o ⊆ 𝒫 𝒫 1o | 
| 9 | dftr4 4136 | . . . 4 ⊢ (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
| 10 | 8, 9 | mpbir 146 | . . 3 ⊢ Tr 𝒫 1o | 
| 11 | elpwi 3614 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
| 12 | 11 | sselda 3183 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 1o) | 
| 13 | el1o 6495 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 14 | 12, 13 | sylib 122 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 = ∅) | 
| 15 | 0ss 3489 | . . . . . . 7 ⊢ ∅ ⊆ 𝑥 | |
| 16 | 14, 15 | eqsstrdi 3235 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊆ 𝑥) | 
| 17 | 16 | ralrimiva 2570 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | 
| 18 | dftr3 4135 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | |
| 19 | 17, 18 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → Tr 𝑥) | 
| 20 | 19 | rgen 2550 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 1oTr 𝑥 | 
| 21 | dford3 4402 | . . 3 ⊢ (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥)) | |
| 22 | 10, 20, 21 | mpbir2an 944 | . 2 ⊢ Ord 𝒫 1o | 
| 23 | 1oex 6482 | . . 3 ⊢ 1o ∈ V | |
| 24 | 23 | pwex 4216 | . 2 ⊢ 𝒫 1o ∈ V | 
| 25 | elon2 4411 | . 2 ⊢ (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V)) | |
| 26 | 22, 24, 25 | mpbir2an 944 | 1 ⊢ 𝒫 1o ∈ On | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {csn 3622 Tr wtr 4131 Ord word 4397 Oncon0 4398 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: pw1ne1 7296 sucpw1nss3 7302 onntri35 7304 onntri45 7308 | 
| Copyright terms: Public domain | W3C validator |