Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1on | GIF version |
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
Ref | Expression |
---|---|
pw1on | ⊢ 𝒫 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6397 | . . . . . 6 ⊢ 1o = {∅} | |
2 | elsni 3594 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0elpw 4143 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 1o | |
4 | 2, 3 | eqeltrdi 2257 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o) |
5 | 4 | ssriv 3146 | . . . . . 6 ⊢ {∅} ⊆ 𝒫 1o |
6 | 1, 5 | eqsstri 3174 | . . . . 5 ⊢ 1o ⊆ 𝒫 1o |
7 | sspwb 4194 | . . . . 5 ⊢ (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
8 | 6, 7 | mpbi 144 | . . . 4 ⊢ 𝒫 1o ⊆ 𝒫 𝒫 1o |
9 | dftr4 4085 | . . . 4 ⊢ (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
10 | 8, 9 | mpbir 145 | . . 3 ⊢ Tr 𝒫 1o |
11 | elpwi 3568 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
12 | 11 | sselda 3142 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 1o) |
13 | el1o 6405 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 12, 13 | sylib 121 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 = ∅) |
15 | 0ss 3447 | . . . . . . 7 ⊢ ∅ ⊆ 𝑥 | |
16 | 14, 15 | eqsstrdi 3194 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊆ 𝑥) |
17 | 16 | ralrimiva 2539 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
18 | dftr3 4084 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | sylibr 133 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → Tr 𝑥) |
20 | 19 | rgen 2519 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 1oTr 𝑥 |
21 | dford3 4345 | . . 3 ⊢ (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥)) | |
22 | 10, 20, 21 | mpbir2an 932 | . 2 ⊢ Ord 𝒫 1o |
23 | 1oex 6392 | . . 3 ⊢ 1o ∈ V | |
24 | 23 | pwex 4162 | . 2 ⊢ 𝒫 1o ∈ V |
25 | elon2 4354 | . 2 ⊢ (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V)) | |
26 | 22, 24, 25 | mpbir2an 932 | 1 ⊢ 𝒫 1o ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 Tr wtr 4080 Ord word 4340 Oncon0 4341 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-1o 6384 |
This theorem is referenced by: pw1ne1 7185 sucpw1nss3 7191 onntri35 7193 onntri45 7197 |
Copyright terms: Public domain | W3C validator |