ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on GIF version

Theorem pw1on 7399
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on 𝒫 1o ∈ On

Proof of Theorem pw1on
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6565 . . . . . 6 1o = {∅}
2 elsni 3684 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0elpw 4247 . . . . . . . 8 ∅ ∈ 𝒫 1o
42, 3eqeltrdi 2320 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o)
54ssriv 3228 . . . . . 6 {∅} ⊆ 𝒫 1o
61, 5eqsstri 3256 . . . . 5 1o ⊆ 𝒫 1o
7 sspwb 4301 . . . . 5 (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
86, 7mpbi 145 . . . 4 𝒫 1o ⊆ 𝒫 𝒫 1o
9 dftr4 4186 . . . 4 (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
108, 9mpbir 146 . . 3 Tr 𝒫 1o
11 elpwi 3658 . . . . . . . . 9 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
1211sselda 3224 . . . . . . . 8 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 ∈ 1o)
13 el1o 6573 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
1412, 13sylib 122 . . . . . . 7 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 = ∅)
15 0ss 3530 . . . . . . 7 ∅ ⊆ 𝑥
1614, 15eqsstrdi 3276 . . . . . 6 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦𝑥)
1716ralrimiva 2603 . . . . 5 (𝑥 ∈ 𝒫 1o → ∀𝑦𝑥 𝑦𝑥)
18 dftr3 4185 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
1917, 18sylibr 134 . . . 4 (𝑥 ∈ 𝒫 1o → Tr 𝑥)
2019rgen 2583 . . 3 𝑥 ∈ 𝒫 1oTr 𝑥
21 dford3 4455 . . 3 (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥))
2210, 20, 21mpbir2an 948 . 2 Ord 𝒫 1o
23 1oex 6560 . . 3 1o ∈ V
2423pwex 4266 . 2 𝒫 1o ∈ V
25 elon2 4464 . 2 (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V))
2622, 24, 25mpbir2an 948 1 𝒫 1o ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197  c0 3491  𝒫 cpw 3649  {csn 3666  Tr wtr 4181  Ord word 4450  Oncon0 4451  1oc1o 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456  df-suc 4459  df-1o 6552
This theorem is referenced by:  pw1ne1  7402  sucpw1nss3  7408  onntri35  7410  onntri45  7414
  Copyright terms: Public domain W3C validator