Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1on | GIF version |
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
Ref | Expression |
---|---|
pw1on | ⊢ 𝒫 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6370 | . . . . . 6 ⊢ 1o = {∅} | |
2 | elsni 3578 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0elpw 4124 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 1o | |
4 | 2, 3 | eqeltrdi 2248 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o) |
5 | 4 | ssriv 3132 | . . . . . 6 ⊢ {∅} ⊆ 𝒫 1o |
6 | 1, 5 | eqsstri 3160 | . . . . 5 ⊢ 1o ⊆ 𝒫 1o |
7 | sspwb 4175 | . . . . 5 ⊢ (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
8 | 6, 7 | mpbi 144 | . . . 4 ⊢ 𝒫 1o ⊆ 𝒫 𝒫 1o |
9 | dftr4 4067 | . . . 4 ⊢ (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
10 | 8, 9 | mpbir 145 | . . 3 ⊢ Tr 𝒫 1o |
11 | elpwi 3552 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
12 | 11 | sselda 3128 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 1o) |
13 | el1o 6378 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 12, 13 | sylib 121 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 = ∅) |
15 | 0ss 3432 | . . . . . . 7 ⊢ ∅ ⊆ 𝑥 | |
16 | 14, 15 | eqsstrdi 3180 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊆ 𝑥) |
17 | 16 | ralrimiva 2530 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
18 | dftr3 4066 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | sylibr 133 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → Tr 𝑥) |
20 | 19 | rgen 2510 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 1oTr 𝑥 |
21 | dford3 4326 | . . 3 ⊢ (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥)) | |
22 | 10, 20, 21 | mpbir2an 927 | . 2 ⊢ Ord 𝒫 1o |
23 | 1oex 6365 | . . 3 ⊢ 1o ∈ V | |
24 | 23 | pwex 4143 | . 2 ⊢ 𝒫 1o ∈ V |
25 | elon2 4335 | . 2 ⊢ (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V)) | |
26 | 22, 24, 25 | mpbir2an 927 | 1 ⊢ 𝒫 1o ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∀wral 2435 Vcvv 2712 ⊆ wss 3102 ∅c0 3394 𝒫 cpw 3543 {csn 3560 Tr wtr 4062 Ord word 4321 Oncon0 4322 1oc1o 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-iord 4325 df-on 4327 df-suc 4330 df-1o 6357 |
This theorem is referenced by: pw1ne1 7147 sucpw1nss3 7153 onntri35 7155 onntri45 7159 |
Copyright terms: Public domain | W3C validator |