Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1on | GIF version |
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
Ref | Expression |
---|---|
pw1on | ⊢ 𝒫 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6408 | . . . . . 6 ⊢ 1o = {∅} | |
2 | elsni 3601 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0elpw 4150 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 1o | |
4 | 2, 3 | eqeltrdi 2261 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o) |
5 | 4 | ssriv 3151 | . . . . . 6 ⊢ {∅} ⊆ 𝒫 1o |
6 | 1, 5 | eqsstri 3179 | . . . . 5 ⊢ 1o ⊆ 𝒫 1o |
7 | sspwb 4201 | . . . . 5 ⊢ (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
8 | 6, 7 | mpbi 144 | . . . 4 ⊢ 𝒫 1o ⊆ 𝒫 𝒫 1o |
9 | dftr4 4092 | . . . 4 ⊢ (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o) | |
10 | 8, 9 | mpbir 145 | . . 3 ⊢ Tr 𝒫 1o |
11 | elpwi 3575 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
12 | 11 | sselda 3147 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 1o) |
13 | el1o 6416 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 12, 13 | sylib 121 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 = ∅) |
15 | 0ss 3453 | . . . . . . 7 ⊢ ∅ ⊆ 𝑥 | |
16 | 14, 15 | eqsstrdi 3199 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 1o ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊆ 𝑥) |
17 | 16 | ralrimiva 2543 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
18 | dftr3 4091 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | sylibr 133 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → Tr 𝑥) |
20 | 19 | rgen 2523 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 1oTr 𝑥 |
21 | dford3 4352 | . . 3 ⊢ (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥)) | |
22 | 10, 20, 21 | mpbir2an 937 | . 2 ⊢ Ord 𝒫 1o |
23 | 1oex 6403 | . . 3 ⊢ 1o ∈ V | |
24 | 23 | pwex 4169 | . 2 ⊢ 𝒫 1o ∈ V |
25 | elon2 4361 | . 2 ⊢ (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V)) | |
26 | 22, 24, 25 | mpbir2an 937 | 1 ⊢ 𝒫 1o ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ⊆ wss 3121 ∅c0 3414 𝒫 cpw 3566 {csn 3583 Tr wtr 4087 Ord word 4347 Oncon0 4348 1oc1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-1o 6395 |
This theorem is referenced by: pw1ne1 7206 sucpw1nss3 7212 onntri35 7214 onntri45 7218 |
Copyright terms: Public domain | W3C validator |