ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on GIF version

Theorem pw1on 7203
Description: The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on 𝒫 1o ∈ On

Proof of Theorem pw1on
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6408 . . . . . 6 1o = {∅}
2 elsni 3601 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0elpw 4150 . . . . . . . 8 ∅ ∈ 𝒫 1o
42, 3eqeltrdi 2261 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 ∈ 𝒫 1o)
54ssriv 3151 . . . . . 6 {∅} ⊆ 𝒫 1o
61, 5eqsstri 3179 . . . . 5 1o ⊆ 𝒫 1o
7 sspwb 4201 . . . . 5 (1o ⊆ 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
86, 7mpbi 144 . . . 4 𝒫 1o ⊆ 𝒫 𝒫 1o
9 dftr4 4092 . . . 4 (Tr 𝒫 1o ↔ 𝒫 1o ⊆ 𝒫 𝒫 1o)
108, 9mpbir 145 . . 3 Tr 𝒫 1o
11 elpwi 3575 . . . . . . . . 9 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
1211sselda 3147 . . . . . . . 8 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 ∈ 1o)
13 el1o 6416 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
1412, 13sylib 121 . . . . . . 7 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦 = ∅)
15 0ss 3453 . . . . . . 7 ∅ ⊆ 𝑥
1614, 15eqsstrdi 3199 . . . . . 6 ((𝑥 ∈ 𝒫 1o𝑦𝑥) → 𝑦𝑥)
1716ralrimiva 2543 . . . . 5 (𝑥 ∈ 𝒫 1o → ∀𝑦𝑥 𝑦𝑥)
18 dftr3 4091 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
1917, 18sylibr 133 . . . 4 (𝑥 ∈ 𝒫 1o → Tr 𝑥)
2019rgen 2523 . . 3 𝑥 ∈ 𝒫 1oTr 𝑥
21 dford3 4352 . . 3 (Ord 𝒫 1o ↔ (Tr 𝒫 1o ∧ ∀𝑥 ∈ 𝒫 1oTr 𝑥))
2210, 20, 21mpbir2an 937 . 2 Ord 𝒫 1o
23 1oex 6403 . . 3 1o ∈ V
2423pwex 4169 . 2 𝒫 1o ∈ V
25 elon2 4361 . 2 (𝒫 1o ∈ On ↔ (Ord 𝒫 1o ∧ 𝒫 1o ∈ V))
2622, 24, 25mpbir2an 937 1 𝒫 1o ∈ On
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121  c0 3414  𝒫 cpw 3566  {csn 3583  Tr wtr 4087  Ord word 4347  Oncon0 4348  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395
This theorem is referenced by:  pw1ne1  7206  sucpw1nss3  7212  onntri35  7214  onntri45  7218
  Copyright terms: Public domain W3C validator