ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim GIF version

Theorem ordsucim 4501
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsucim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordtr 4380 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 4423 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 14 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 4373 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq2i 2244 . . . . 5 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
6 elun 3278 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
7 velsn 3611 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
87orbi2i 762 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ (𝑥𝐴𝑥 = 𝐴))
95, 6, 83bitri 206 . . . 4 (𝑥 ∈ suc 𝐴 ↔ (𝑥𝐴𝑥 = 𝐴))
10 dford3 4369 . . . . . . . 8 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
1110simprbi 275 . . . . . . 7 (Ord 𝐴 → ∀𝑥𝐴 Tr 𝑥)
12 df-ral 2460 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
1311, 12sylib 122 . . . . . 6 (Ord 𝐴 → ∀𝑥(𝑥𝐴 → Tr 𝑥))
141319.21bi 1558 . . . . 5 (Ord 𝐴 → (𝑥𝐴 → Tr 𝑥))
15 treq 4109 . . . . . 6 (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴))
161, 15syl5ibrcom 157 . . . . 5 (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥))
1714, 16jaod 717 . . . 4 (Ord 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → Tr 𝑥))
189, 17biimtrid 152 . . 3 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥))
1918ralrimiv 2549 . 2 (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥)
20 dford3 4369 . 2 (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥))
213, 19, 20sylanbrc 417 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708  wal 1351   = wceq 1353  wcel 2148  wral 2455  cun 3129  {csn 3594  Tr wtr 4103  Ord word 4364  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-uni 3812  df-tr 4104  df-iord 4368  df-suc 4373
This theorem is referenced by:  onsuc  4502  ordsucg  4503  onsucsssucr  4510  ordtriexmidlem  4520  2ordpr  4525  ordsuc  4564  nnsucsssuc  6495
  Copyright terms: Public domain W3C validator