ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim GIF version

Theorem ordsucim 4532
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsucim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordtr 4409 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 4452 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 14 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 4402 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq2i 2260 . . . . 5 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
6 elun 3300 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
7 velsn 3635 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
87orbi2i 763 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ (𝑥𝐴𝑥 = 𝐴))
95, 6, 83bitri 206 . . . 4 (𝑥 ∈ suc 𝐴 ↔ (𝑥𝐴𝑥 = 𝐴))
10 dford3 4398 . . . . . . . 8 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
1110simprbi 275 . . . . . . 7 (Ord 𝐴 → ∀𝑥𝐴 Tr 𝑥)
12 df-ral 2477 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
1311, 12sylib 122 . . . . . 6 (Ord 𝐴 → ∀𝑥(𝑥𝐴 → Tr 𝑥))
141319.21bi 1569 . . . . 5 (Ord 𝐴 → (𝑥𝐴 → Tr 𝑥))
15 treq 4133 . . . . . 6 (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴))
161, 15syl5ibrcom 157 . . . . 5 (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥))
1714, 16jaod 718 . . . 4 (Ord 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → Tr 𝑥))
189, 17biimtrid 152 . . 3 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥))
1918ralrimiv 2566 . 2 (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥)
20 dford3 4398 . 2 (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥))
213, 19, 20sylanbrc 417 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709  wal 1362   = wceq 1364  wcel 2164  wral 2472  cun 3151  {csn 3618  Tr wtr 4127  Ord word 4393  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4397  df-suc 4402
This theorem is referenced by:  onsuc  4533  ordsucg  4534  onsucsssucr  4541  ordtriexmidlem  4551  2ordpr  4556  ordsuc  4595  nnsucsssuc  6545
  Copyright terms: Public domain W3C validator