ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim GIF version

Theorem ordsucim 4484
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsucim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordtr 4363 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 4406 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 14 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 4356 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq2i 2237 . . . . 5 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
6 elun 3268 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
7 velsn 3600 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
87orbi2i 757 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ (𝑥𝐴𝑥 = 𝐴))
95, 6, 83bitri 205 . . . 4 (𝑥 ∈ suc 𝐴 ↔ (𝑥𝐴𝑥 = 𝐴))
10 dford3 4352 . . . . . . . 8 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
1110simprbi 273 . . . . . . 7 (Ord 𝐴 → ∀𝑥𝐴 Tr 𝑥)
12 df-ral 2453 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
1311, 12sylib 121 . . . . . 6 (Ord 𝐴 → ∀𝑥(𝑥𝐴 → Tr 𝑥))
141319.21bi 1551 . . . . 5 (Ord 𝐴 → (𝑥𝐴 → Tr 𝑥))
15 treq 4093 . . . . . 6 (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴))
161, 15syl5ibrcom 156 . . . . 5 (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥))
1714, 16jaod 712 . . . 4 (Ord 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → Tr 𝑥))
189, 17syl5bi 151 . . 3 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥))
1918ralrimiv 2542 . 2 (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥)
20 dford3 4352 . 2 (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥))
213, 19, 20sylanbrc 415 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wal 1346   = wceq 1348  wcel 2141  wral 2448  cun 3119  {csn 3583  Tr wtr 4087  Ord word 4347  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-suc 4356
This theorem is referenced by:  suceloni  4485  ordsucg  4486  onsucsssucr  4493  ordtriexmidlem  4503  2ordpr  4508  ordsuc  4547  nnsucsssuc  6471
  Copyright terms: Public domain W3C validator