| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordsucim | GIF version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) | 
| Ref | Expression | 
|---|---|
| ordsucim | ⊢ (Ord 𝐴 → Ord suc 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtr 4413 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | suctr 4456 | . . 3 ⊢ (Tr 𝐴 → Tr suc 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (Ord 𝐴 → Tr suc 𝐴) | 
| 4 | df-suc 4406 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | 4 | eleq2i 2263 | . . . . 5 ⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) | 
| 6 | elun 3304 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) | |
| 7 | velsn 3639 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 8 | 7 | orbi2i 763 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) | 
| 9 | 5, 6, 8 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ suc 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) | 
| 10 | dford3 4402 | . . . . . . . 8 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 11 | 10 | simprbi 275 | . . . . . . 7 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 Tr 𝑥) | 
| 12 | df-ral 2480 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
| 13 | 11, 12 | sylib 122 | . . . . . 6 ⊢ (Ord 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | 
| 14 | 13 | 19.21bi 1572 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ 𝐴 → Tr 𝑥)) | 
| 15 | treq 4137 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴)) | |
| 16 | 1, 15 | syl5ibrcom 157 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥)) | 
| 17 | 14, 16 | jaod 718 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴) → Tr 𝑥)) | 
| 18 | 9, 17 | biimtrid 152 | . . 3 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥)) | 
| 19 | 18 | ralrimiv 2569 | . 2 ⊢ (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥) | 
| 20 | dford3 4402 | . 2 ⊢ (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥)) | |
| 21 | 3, 19, 20 | sylanbrc 417 | 1 ⊢ (Ord 𝐴 → Ord suc 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∪ cun 3155 {csn 3622 Tr wtr 4131 Ord word 4397 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-suc 4406 | 
| This theorem is referenced by: onsuc 4537 ordsucg 4538 onsucsssucr 4545 ordtriexmidlem 4555 2ordpr 4560 ordsuc 4599 nnsucsssuc 6550 | 
| Copyright terms: Public domain | W3C validator |