| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucim | GIF version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordsucim | ⊢ (Ord 𝐴 → Ord suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4469 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | suctr 4512 | . . 3 ⊢ (Tr 𝐴 → Tr suc 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (Ord 𝐴 → Tr suc 𝐴) |
| 4 | df-suc 4462 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | 4 | eleq2i 2296 | . . . . 5 ⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) |
| 6 | elun 3345 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) | |
| 7 | velsn 3683 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 8 | 7 | orbi2i 767 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) |
| 9 | 5, 6, 8 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ suc 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) |
| 10 | dford3 4458 | . . . . . . . 8 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 11 | 10 | simprbi 275 | . . . . . . 7 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
| 12 | df-ral 2513 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
| 13 | 11, 12 | sylib 122 | . . . . . 6 ⊢ (Ord 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 14 | 13 | 19.21bi 1604 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ 𝐴 → Tr 𝑥)) |
| 15 | treq 4188 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴)) | |
| 16 | 1, 15 | syl5ibrcom 157 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥)) |
| 17 | 14, 16 | jaod 722 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴) → Tr 𝑥)) |
| 18 | 9, 17 | biimtrid 152 | . . 3 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥)) |
| 19 | 18 | ralrimiv 2602 | . 2 ⊢ (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥) |
| 20 | dford3 4458 | . 2 ⊢ (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥)) | |
| 21 | 3, 19, 20 | sylanbrc 417 | 1 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∪ cun 3195 {csn 3666 Tr wtr 4182 Ord word 4453 suc csuc 4456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-uni 3889 df-tr 4183 df-iord 4457 df-suc 4462 |
| This theorem is referenced by: onsuc 4593 ordsucg 4594 onsucsssucr 4601 ordtriexmidlem 4611 2ordpr 4616 ordsuc 4655 nnsucsssuc 6646 |
| Copyright terms: Public domain | W3C validator |