ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim GIF version

Theorem ordsucim 4552
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsucim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordtr 4429 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 4472 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 14 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 4422 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq2i 2273 . . . . 5 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
6 elun 3315 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
7 velsn 3651 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
87orbi2i 764 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ (𝑥𝐴𝑥 = 𝐴))
95, 6, 83bitri 206 . . . 4 (𝑥 ∈ suc 𝐴 ↔ (𝑥𝐴𝑥 = 𝐴))
10 dford3 4418 . . . . . . . 8 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
1110simprbi 275 . . . . . . 7 (Ord 𝐴 → ∀𝑥𝐴 Tr 𝑥)
12 df-ral 2490 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
1311, 12sylib 122 . . . . . 6 (Ord 𝐴 → ∀𝑥(𝑥𝐴 → Tr 𝑥))
141319.21bi 1582 . . . . 5 (Ord 𝐴 → (𝑥𝐴 → Tr 𝑥))
15 treq 4152 . . . . . 6 (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴))
161, 15syl5ibrcom 157 . . . . 5 (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥))
1714, 16jaod 719 . . . 4 (Ord 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → Tr 𝑥))
189, 17biimtrid 152 . . 3 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥))
1918ralrimiv 2579 . 2 (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥)
20 dford3 4418 . 2 (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥))
213, 19, 20sylanbrc 417 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710  wal 1371   = wceq 1373  wcel 2177  wral 2485  cun 3165  {csn 3634  Tr wtr 4146  Ord word 4413  suc csuc 4416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-uni 3853  df-tr 4147  df-iord 4417  df-suc 4422
This theorem is referenced by:  onsuc  4553  ordsucg  4554  onsucsssucr  4561  ordtriexmidlem  4571  2ordpr  4576  ordsuc  4615  nnsucsssuc  6585
  Copyright terms: Public domain W3C validator