![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordsucim | GIF version |
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) |
Ref | Expression |
---|---|
ordsucim | ⊢ (Ord 𝐴 → Ord suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4393 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | suctr 4436 | . . 3 ⊢ (Tr 𝐴 → Tr suc 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (Ord 𝐴 → Tr suc 𝐴) |
4 | df-suc 4386 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | eleq2i 2256 | . . . . 5 ⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) |
6 | elun 3291 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) | |
7 | velsn 3624 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
8 | 7 | orbi2i 763 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) |
9 | 5, 6, 8 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ suc 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) |
10 | dford3 4382 | . . . . . . . 8 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
11 | 10 | simprbi 275 | . . . . . . 7 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
12 | df-ral 2473 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) | |
13 | 11, 12 | sylib 122 | . . . . . 6 ⊢ (Ord 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → Tr 𝑥)) |
14 | 13 | 19.21bi 1569 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ 𝐴 → Tr 𝑥)) |
15 | treq 4122 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (Tr 𝑥 ↔ Tr 𝐴)) | |
16 | 1, 15 | syl5ibrcom 157 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 = 𝐴 → Tr 𝑥)) |
17 | 14, 16 | jaod 718 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴) → Tr 𝑥)) |
18 | 9, 17 | biimtrid 152 | . . 3 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → Tr 𝑥)) |
19 | 18 | ralrimiv 2562 | . 2 ⊢ (Ord 𝐴 → ∀𝑥 ∈ suc 𝐴Tr 𝑥) |
20 | dford3 4382 | . 2 ⊢ (Ord suc 𝐴 ↔ (Tr suc 𝐴 ∧ ∀𝑥 ∈ suc 𝐴Tr 𝑥)) | |
21 | 3, 19, 20 | sylanbrc 417 | 1 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∪ cun 3142 {csn 3607 Tr wtr 4116 Ord word 4377 suc csuc 4380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-uni 3825 df-tr 4117 df-iord 4381 df-suc 4386 |
This theorem is referenced by: onsuc 4515 ordsucg 4516 onsucsssucr 4523 ordtriexmidlem 4533 2ordpr 4538 ordsuc 4577 nnsucsssuc 6511 |
Copyright terms: Public domain | W3C validator |