ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordom GIF version

Theorem ordom 4668
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4667 . . . 4 ((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
21gen2 1474 . . 3 𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
3 dftr2 4155 . . 3 (Tr ω ↔ ∀𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω))
42, 3mpbir 146 . 2 Tr ω
5 treq 4159 . . . 4 (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅))
6 treq 4159 . . . 4 (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥))
7 treq 4159 . . . 4 (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥))
8 tr0 4164 . . . 4 Tr ∅
9 suctr 4481 . . . . 5 (Tr 𝑥 → Tr suc 𝑥)
109a1i 9 . . . 4 (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥))
115, 6, 7, 6, 8, 10finds 4661 . . 3 (𝑥 ∈ ω → Tr 𝑥)
1211rgen 2560 . 2 𝑥 ∈ ω Tr 𝑥
13 dford3 4427 . 2 (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥))
144, 12, 13mpbir2an 945 1 Ord ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wcel 2177  wral 2485  c0 3464  Tr wtr 4153  Ord word 4422  suc csuc 4425  ωcom 4651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-int 3895  df-tr 4154  df-iord 4426  df-suc 4431  df-iom 4652
This theorem is referenced by:  omelon2  4669  limom  4675  freccllem  6506  frecfcllem  6508  frecsuclem  6510  fict  6986  infnfi  7013  isinfinf  7015  hashinfuni  10954  hashinfom  10955  hashennn  10957  ennnfonelemrn  12875  ctinf  12886
  Copyright terms: Public domain W3C validator