ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordom GIF version

Theorem ordom 4608
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4607 . . . 4 ((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
21gen2 1450 . . 3 𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
3 dftr2 4105 . . 3 (Tr ω ↔ ∀𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω))
42, 3mpbir 146 . 2 Tr ω
5 treq 4109 . . . 4 (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅))
6 treq 4109 . . . 4 (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥))
7 treq 4109 . . . 4 (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥))
8 tr0 4114 . . . 4 Tr ∅
9 suctr 4423 . . . . 5 (Tr 𝑥 → Tr suc 𝑥)
109a1i 9 . . . 4 (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥))
115, 6, 7, 6, 8, 10finds 4601 . . 3 (𝑥 ∈ ω → Tr 𝑥)
1211rgen 2530 . 2 𝑥 ∈ ω Tr 𝑥
13 dford3 4369 . 2 (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥))
144, 12, 13mpbir2an 942 1 Ord ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351  wcel 2148  wral 2455  c0 3424  Tr wtr 4103  Ord word 4364  suc csuc 4367  ωcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-suc 4373  df-iom 4592
This theorem is referenced by:  omelon2  4609  limom  4615  freccllem  6405  frecfcllem  6407  frecsuclem  6409  fict  6870  infnfi  6897  isinfinf  6899  hashinfuni  10759  hashinfom  10760  hashennn  10762  ennnfonelemrn  12422  ctinf  12433
  Copyright terms: Public domain W3C validator