| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | GIF version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4667 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
| 2 | 1 | gen2 1474 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
| 3 | dftr2 4155 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
| 4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
| 5 | treq 4159 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
| 6 | treq 4159 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
| 7 | treq 4159 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
| 8 | tr0 4164 | . . . 4 ⊢ Tr ∅ | |
| 9 | suctr 4481 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
| 11 | 5, 6, 7, 6, 8, 10 | finds 4661 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
| 12 | 11 | rgen 2560 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
| 13 | dford3 4427 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
| 14 | 4, 12, 13 | mpbir2an 945 | 1 ⊢ Ord ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∈ wcel 2177 ∀wral 2485 ∅c0 3464 Tr wtr 4153 Ord word 4422 suc csuc 4425 ωcom 4651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-tr 4154 df-iord 4426 df-suc 4431 df-iom 4652 |
| This theorem is referenced by: omelon2 4669 limom 4675 freccllem 6506 frecfcllem 6508 frecsuclem 6510 fict 6986 infnfi 7013 isinfinf 7015 hashinfuni 10954 hashinfom 10955 hashennn 10957 ennnfonelemrn 12875 ctinf 12886 |
| Copyright terms: Public domain | W3C validator |