ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordom GIF version

Theorem ordom 4643
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4642 . . . 4 ((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
21gen2 1464 . . 3 𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
3 dftr2 4133 . . 3 (Tr ω ↔ ∀𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω))
42, 3mpbir 146 . 2 Tr ω
5 treq 4137 . . . 4 (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅))
6 treq 4137 . . . 4 (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥))
7 treq 4137 . . . 4 (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥))
8 tr0 4142 . . . 4 Tr ∅
9 suctr 4456 . . . . 5 (Tr 𝑥 → Tr suc 𝑥)
109a1i 9 . . . 4 (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥))
115, 6, 7, 6, 8, 10finds 4636 . . 3 (𝑥 ∈ ω → Tr 𝑥)
1211rgen 2550 . 2 𝑥 ∈ ω Tr 𝑥
13 dford3 4402 . 2 (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥))
144, 12, 13mpbir2an 944 1 Ord ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wcel 2167  wral 2475  c0 3450  Tr wtr 4131  Ord word 4397  suc csuc 4400  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-suc 4406  df-iom 4627
This theorem is referenced by:  omelon2  4644  limom  4650  freccllem  6460  frecfcllem  6462  frecsuclem  6464  fict  6929  infnfi  6956  isinfinf  6958  hashinfuni  10869  hashinfom  10870  hashennn  10872  ennnfonelemrn  12636  ctinf  12647
  Copyright terms: Public domain W3C validator