![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordom | GIF version |
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4638 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
2 | 1 | gen2 1461 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
3 | dftr2 4129 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
5 | treq 4133 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
6 | treq 4133 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
7 | treq 4133 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
8 | tr0 4138 | . . . 4 ⊢ Tr ∅ | |
9 | suctr 4452 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
11 | 5, 6, 7, 6, 8, 10 | finds 4632 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
12 | 11 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
13 | dford3 4398 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
14 | 4, 12, 13 | mpbir2an 944 | 1 ⊢ Ord ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2164 ∀wral 2472 ∅c0 3446 Tr wtr 4127 Ord word 4393 suc csuc 4396 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-tr 4128 df-iord 4397 df-suc 4402 df-iom 4623 |
This theorem is referenced by: omelon2 4640 limom 4646 freccllem 6455 frecfcllem 6457 frecsuclem 6459 fict 6924 infnfi 6951 isinfinf 6953 hashinfuni 10848 hashinfom 10849 hashennn 10851 ennnfonelemrn 12576 ctinf 12587 |
Copyright terms: Public domain | W3C validator |