ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordom GIF version

Theorem ordom 4654
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4653 . . . 4 ((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
21gen2 1472 . . 3 𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
3 dftr2 4143 . . 3 (Tr ω ↔ ∀𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω))
42, 3mpbir 146 . 2 Tr ω
5 treq 4147 . . . 4 (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅))
6 treq 4147 . . . 4 (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥))
7 treq 4147 . . . 4 (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥))
8 tr0 4152 . . . 4 Tr ∅
9 suctr 4467 . . . . 5 (Tr 𝑥 → Tr suc 𝑥)
109a1i 9 . . . 4 (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥))
115, 6, 7, 6, 8, 10finds 4647 . . 3 (𝑥 ∈ ω → Tr 𝑥)
1211rgen 2558 . 2 𝑥 ∈ ω Tr 𝑥
13 dford3 4413 . 2 (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥))
144, 12, 13mpbir2an 944 1 Ord ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370  wcel 2175  wral 2483  c0 3459  Tr wtr 4141  Ord word 4408  suc csuc 4411  ωcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-iord 4412  df-suc 4417  df-iom 4638
This theorem is referenced by:  omelon2  4655  limom  4661  freccllem  6487  frecfcllem  6489  frecsuclem  6491  fict  6964  infnfi  6991  isinfinf  6993  hashinfuni  10920  hashinfom  10921  hashennn  10923  ennnfonelemrn  12732  ctinf  12743
  Copyright terms: Public domain W3C validator