| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | GIF version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4654 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
| 2 | 1 | gen2 1473 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
| 3 | dftr2 4144 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
| 4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
| 5 | treq 4148 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
| 6 | treq 4148 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
| 7 | treq 4148 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
| 8 | tr0 4153 | . . . 4 ⊢ Tr ∅ | |
| 9 | suctr 4468 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
| 11 | 5, 6, 7, 6, 8, 10 | finds 4648 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
| 12 | 11 | rgen 2559 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
| 13 | dford3 4414 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
| 14 | 4, 12, 13 | mpbir2an 945 | 1 ⊢ Ord ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∈ wcel 2176 ∀wral 2484 ∅c0 3460 Tr wtr 4142 Ord word 4409 suc csuc 4412 ωcom 4638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: omelon2 4656 limom 4662 freccllem 6488 frecfcllem 6490 frecsuclem 6492 fict 6965 infnfi 6992 isinfinf 6994 hashinfuni 10922 hashinfom 10923 hashennn 10925 ennnfonelemrn 12790 ctinf 12801 |
| Copyright terms: Public domain | W3C validator |