ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordom GIF version

Theorem ordom 4639
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4638 . . . 4 ((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
21gen2 1461 . . 3 𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω)
3 dftr2 4129 . . 3 (Tr ω ↔ ∀𝑥𝑦((𝑥𝑦𝑦 ∈ ω) → 𝑥 ∈ ω))
42, 3mpbir 146 . 2 Tr ω
5 treq 4133 . . . 4 (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅))
6 treq 4133 . . . 4 (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥))
7 treq 4133 . . . 4 (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥))
8 tr0 4138 . . . 4 Tr ∅
9 suctr 4452 . . . . 5 (Tr 𝑥 → Tr suc 𝑥)
109a1i 9 . . . 4 (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥))
115, 6, 7, 6, 8, 10finds 4632 . . 3 (𝑥 ∈ ω → Tr 𝑥)
1211rgen 2547 . 2 𝑥 ∈ ω Tr 𝑥
13 dford3 4398 . 2 (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥))
144, 12, 13mpbir2an 944 1 Ord ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wcel 2164  wral 2472  c0 3446  Tr wtr 4127  Ord word 4393  suc csuc 4396  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-suc 4402  df-iom 4623
This theorem is referenced by:  omelon2  4640  limom  4646  freccllem  6455  frecfcllem  6457  frecsuclem  6459  fict  6924  infnfi  6951  isinfinf  6953  hashinfuni  10848  hashinfom  10849  hashennn  10851  ennnfonelemrn  12576  ctinf  12587
  Copyright terms: Public domain W3C validator