Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordom | GIF version |
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4583 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
2 | 1 | gen2 1438 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
3 | dftr2 4082 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
4 | 2, 3 | mpbir 145 | . 2 ⊢ Tr ω |
5 | treq 4086 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
6 | treq 4086 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
7 | treq 4086 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
8 | tr0 4091 | . . . 4 ⊢ Tr ∅ | |
9 | suctr 4399 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
11 | 5, 6, 7, 6, 8, 10 | finds 4577 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
12 | 11 | rgen 2519 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
13 | dford3 4345 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
14 | 4, 12, 13 | mpbir2an 932 | 1 ⊢ Ord ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 ∈ wcel 2136 ∀wral 2444 ∅c0 3409 Tr wtr 4080 Ord word 4340 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-suc 4349 df-iom 4568 |
This theorem is referenced by: omelon2 4585 limom 4591 freccllem 6370 frecfcllem 6372 frecsuclem 6374 fict 6834 infnfi 6861 isinfinf 6863 hashinfuni 10690 hashinfom 10691 hashennn 10693 ennnfonelemrn 12352 ctinf 12363 |
Copyright terms: Public domain | W3C validator |