![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordom | GIF version |
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4639 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
2 | 1 | gen2 1461 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
3 | dftr2 4130 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
5 | treq 4134 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
6 | treq 4134 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
7 | treq 4134 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
8 | tr0 4139 | . . . 4 ⊢ Tr ∅ | |
9 | suctr 4453 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
11 | 5, 6, 7, 6, 8, 10 | finds 4633 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
12 | 11 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
13 | dford3 4399 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
14 | 4, 12, 13 | mpbir2an 944 | 1 ⊢ Ord ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2164 ∀wral 2472 ∅c0 3447 Tr wtr 4128 Ord word 4394 suc csuc 4397 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-iord 4398 df-suc 4403 df-iom 4624 |
This theorem is referenced by: omelon2 4641 limom 4647 freccllem 6457 frecfcllem 6459 frecsuclem 6461 fict 6926 infnfi 6953 isinfinf 6955 hashinfuni 10851 hashinfom 10852 hashennn 10854 ennnfonelemrn 12579 ctinf 12590 |
Copyright terms: Public domain | W3C validator |