| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | GIF version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4643 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
| 2 | 1 | gen2 1464 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
| 3 | dftr2 4134 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
| 4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
| 5 | treq 4138 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
| 6 | treq 4138 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
| 7 | treq 4138 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
| 8 | tr0 4143 | . . . 4 ⊢ Tr ∅ | |
| 9 | suctr 4457 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
| 11 | 5, 6, 7, 6, 8, 10 | finds 4637 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
| 12 | 11 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
| 13 | dford3 4403 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
| 14 | 4, 12, 13 | mpbir2an 944 | 1 ⊢ Ord ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 ∅c0 3451 Tr wtr 4132 Ord word 4398 suc csuc 4401 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: omelon2 4645 limom 4651 freccllem 6469 frecfcllem 6471 frecsuclem 6473 fict 6938 infnfi 6965 isinfinf 6967 hashinfuni 10886 hashinfom 10887 hashennn 10889 ennnfonelemrn 12661 ctinf 12672 |
| Copyright terms: Public domain | W3C validator |