| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordom | GIF version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| ordom | ⊢ Ord ω | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn 4642 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
| 2 | 1 | gen2 1464 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | 
| 3 | dftr2 4133 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
| 4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω | 
| 5 | treq 4137 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
| 6 | treq 4137 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
| 7 | treq 4137 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
| 8 | tr0 4142 | . . . 4 ⊢ Tr ∅ | |
| 9 | suctr 4456 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) | 
| 11 | 5, 6, 7, 6, 8, 10 | finds 4636 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) | 
| 12 | 11 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 | 
| 13 | dford3 4402 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
| 14 | 4, 12, 13 | mpbir2an 944 | 1 ⊢ Ord ω | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 ∅c0 3450 Tr wtr 4131 Ord word 4397 suc csuc 4400 ωcom 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: omelon2 4644 limom 4650 freccllem 6460 frecfcllem 6462 frecsuclem 6464 fict 6929 infnfi 6956 isinfinf 6958 hashinfuni 10869 hashinfom 10870 hashennn 10872 ennnfonelemrn 12636 ctinf 12647 | 
| Copyright terms: Public domain | W3C validator |