![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordom | GIF version |
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4607 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
2 | 1 | gen2 1450 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
3 | dftr2 4105 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
5 | treq 4109 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
6 | treq 4109 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
7 | treq 4109 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
8 | tr0 4114 | . . . 4 ⊢ Tr ∅ | |
9 | suctr 4423 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
11 | 5, 6, 7, 6, 8, 10 | finds 4601 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
12 | 11 | rgen 2530 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
13 | dford3 4369 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
14 | 4, 12, 13 | mpbir2an 942 | 1 ⊢ Ord ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∈ wcel 2148 ∀wral 2455 ∅c0 3424 Tr wtr 4103 Ord word 4364 suc csuc 4367 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-suc 4373 df-iom 4592 |
This theorem is referenced by: omelon2 4609 limom 4615 freccllem 6405 frecfcllem 6407 frecsuclem 6409 fict 6870 infnfi 6897 isinfinf 6899 hashinfuni 10759 hashinfom 10760 hashennn 10762 ennnfonelemrn 12422 ctinf 12433 |
Copyright terms: Public domain | W3C validator |