| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | GIF version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4697 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) | |
| 2 | 1 | gen2 1496 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
| 3 | dftr2 4183 | . . 3 ⊢ (Tr ω ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω)) | |
| 4 | 2, 3 | mpbir 146 | . 2 ⊢ Tr ω |
| 5 | treq 4187 | . . . 4 ⊢ (𝑦 = ∅ → (Tr 𝑦 ↔ Tr ∅)) | |
| 6 | treq 4187 | . . . 4 ⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | |
| 7 | treq 4187 | . . . 4 ⊢ (𝑦 = suc 𝑥 → (Tr 𝑦 ↔ Tr suc 𝑥)) | |
| 8 | tr0 4192 | . . . 4 ⊢ Tr ∅ | |
| 9 | suctr 4511 | . . . . 5 ⊢ (Tr 𝑥 → Tr suc 𝑥) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ ω → (Tr 𝑥 → Tr suc 𝑥)) |
| 11 | 5, 6, 7, 6, 8, 10 | finds 4691 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) |
| 12 | 11 | rgen 2583 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
| 13 | dford3 4457 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
| 14 | 4, 12, 13 | mpbir2an 948 | 1 ⊢ Ord ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 ∅c0 3491 Tr wtr 4181 Ord word 4452 suc csuc 4455 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-tr 4182 df-iord 4456 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: omelon2 4699 limom 4705 freccllem 6546 frecfcllem 6548 frecsuclem 6550 fict 7026 infnfi 7053 isinfinf 7055 hashinfuni 10994 hashinfom 10995 hashennn 10997 ennnfonelemrn 12985 ctinf 12996 |
| Copyright terms: Public domain | W3C validator |