![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trssord | GIF version |
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
Ref | Expression |
---|---|
trssord | ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4249 | . . . . . . 7 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
2 | 1 | simprbi 271 | . . . . . 6 ⊢ (Ord 𝐵 → ∀𝑥 ∈ 𝐵 Tr 𝑥) |
3 | ssralv 3127 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 Tr 𝑥 → ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
4 | 2, 3 | syl5 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (Ord 𝐵 → ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
5 | 4 | imp 123 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
6 | 5 | anim2i 337 | . . 3 ⊢ ((Tr 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
7 | 6 | 3impb 1160 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
8 | dford3 4249 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
9 | 7, 8 | sylibr 133 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 945 ∀wral 2390 ⊆ wss 3037 Tr wtr 3986 Ord word 4244 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-ral 2395 df-in 3043 df-ss 3050 df-iord 4248 |
This theorem is referenced by: ordelord 4263 ordin 4267 ssorduni 4363 ordtriexmidlem 4395 ordtri2or2exmidlem 4401 onsucelsucexmidlem 4404 ordsuc 4438 |
Copyright terms: Public domain | W3C validator |