ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trssord GIF version

Theorem trssord 4358
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4345 . . . . . . 7 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
21simprbi 273 . . . . . 6 (Ord 𝐵 → ∀𝑥𝐵 Tr 𝑥)
3 ssralv 3206 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥))
42, 3syl5 32 . . . . 5 (𝐴𝐵 → (Ord 𝐵 → ∀𝑥𝐴 Tr 𝑥))
54imp 123 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → ∀𝑥𝐴 Tr 𝑥)
65anim2i 340 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
763impb 1189 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
8 dford3 4345 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
97, 8sylibr 133 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wral 2444  wss 3116  Tr wtr 4080  Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-in 3122  df-ss 3129  df-iord 4344
This theorem is referenced by:  ordelord  4359  ordin  4363  ssorduni  4464  ordtriexmidlem  4496  ordtri2or2exmidlem  4503  onsucelsucexmidlem  4506  ordsuc  4540
  Copyright terms: Public domain W3C validator