ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trssord GIF version

Theorem trssord 4415
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4402 . . . . . . 7 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
21simprbi 275 . . . . . 6 (Ord 𝐵 → ∀𝑥𝐵 Tr 𝑥)
3 ssralv 3247 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥))
42, 3syl5 32 . . . . 5 (𝐴𝐵 → (Ord 𝐵 → ∀𝑥𝐴 Tr 𝑥))
54imp 124 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → ∀𝑥𝐴 Tr 𝑥)
65anim2i 342 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
763impb 1201 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
8 dford3 4402 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
97, 8sylibr 134 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wral 2475  wss 3157  Tr wtr 4131  Ord word 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-in 3163  df-ss 3170  df-iord 4401
This theorem is referenced by:  ordelord  4416  ordin  4420  ssorduni  4523  ordtriexmidlem  4555  ordtri2or2exmidlem  4562  onsucelsucexmidlem  4565  ordsuc  4599
  Copyright terms: Public domain W3C validator