ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trssord GIF version

Theorem trssord 4471
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4458 . . . . . . 7 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
21simprbi 275 . . . . . 6 (Ord 𝐵 → ∀𝑥𝐵 Tr 𝑥)
3 ssralv 3288 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥))
42, 3syl5 32 . . . . 5 (𝐴𝐵 → (Ord 𝐵 → ∀𝑥𝐴 Tr 𝑥))
54imp 124 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → ∀𝑥𝐴 Tr 𝑥)
65anim2i 342 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
763impb 1223 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
8 dford3 4458 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
97, 8sylibr 134 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wral 2508  wss 3197  Tr wtr 4182  Ord word 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210  df-iord 4457
This theorem is referenced by:  ordelord  4472  ordin  4476  ssorduni  4579  ordtriexmidlem  4611  ordtri2or2exmidlem  4618  onsucelsucexmidlem  4621  ordsuc  4655
  Copyright terms: Public domain W3C validator