| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trssord | GIF version | ||
| Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| Ref | Expression |
|---|---|
| trssord | ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4432 | . . . . . . 7 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
| 2 | 1 | simprbi 275 | . . . . . 6 ⊢ (Ord 𝐵 → ∀𝑥 ∈ 𝐵 Tr 𝑥) |
| 3 | ssralv 3265 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 Tr 𝑥 → ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 4 | 2, 3 | syl5 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (Ord 𝐵 → ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
| 5 | 4 | imp 124 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
| 6 | 5 | anim2i 342 | . . 3 ⊢ ((Tr 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
| 7 | 6 | 3impb 1202 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
| 8 | dford3 4432 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∀wral 2486 ⊆ wss 3174 Tr wtr 4158 Ord word 4427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-in 3180 df-ss 3187 df-iord 4431 |
| This theorem is referenced by: ordelord 4446 ordin 4450 ssorduni 4553 ordtriexmidlem 4585 ordtri2or2exmidlem 4592 onsucelsucexmidlem 4595 ordsuc 4629 |
| Copyright terms: Public domain | W3C validator |