ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trssord GIF version

Theorem trssord 4365
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4352 . . . . . . 7 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
21simprbi 273 . . . . . 6 (Ord 𝐵 → ∀𝑥𝐵 Tr 𝑥)
3 ssralv 3211 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥))
42, 3syl5 32 . . . . 5 (𝐴𝐵 → (Ord 𝐵 → ∀𝑥𝐴 Tr 𝑥))
54imp 123 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → ∀𝑥𝐴 Tr 𝑥)
65anim2i 340 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
763impb 1194 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
8 dford3 4352 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
97, 8sylibr 133 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973  wral 2448  wss 3121  Tr wtr 4087  Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-in 3127  df-ss 3134  df-iord 4351
This theorem is referenced by:  ordelord  4366  ordin  4370  ssorduni  4471  ordtriexmidlem  4503  ordtri2or2exmidlem  4510  onsucelsucexmidlem  4513  ordsuc  4547
  Copyright terms: Public domain W3C validator