ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tapeq1 GIF version

Theorem tapeq1 7312
Description: Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
tapeq1 (𝑅 = 𝑆 → (𝑅 TAp 𝐴𝑆 TAp 𝐴))

Proof of Theorem tapeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3202 . . 3 (𝑅 = 𝑆 → (𝑅 ⊆ (𝐴 × 𝐴) ↔ 𝑆 ⊆ (𝐴 × 𝐴)))
2 breq 4031 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑥𝑥𝑆𝑥))
32notbid 668 . . . . 5 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑆𝑥))
43ralbidv 2494 . . . 4 (𝑅 = 𝑆 → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝑆𝑥))
5 breq 4031 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
6 breq 4031 . . . . . 6 (𝑅 = 𝑆 → (𝑦𝑅𝑥𝑦𝑆𝑥))
75, 6imbi12d 234 . . . . 5 (𝑅 = 𝑆 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑆𝑦𝑦𝑆𝑥)))
872ralbidv 2518 . . . 4 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑆𝑦𝑦𝑆𝑥)))
94, 8anbi12d 473 . . 3 (𝑅 = 𝑆 → ((∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴 ¬ 𝑥𝑆𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑆𝑦𝑦𝑆𝑥))))
10 breq 4031 . . . . . . . 8 (𝑅 = 𝑆 → (𝑥𝑅𝑧𝑥𝑆𝑧))
11 breq 4031 . . . . . . . 8 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
1210, 11orbi12d 794 . . . . . . 7 (𝑅 = 𝑆 → ((𝑥𝑅𝑧𝑦𝑅𝑧) ↔ (𝑥𝑆𝑧𝑦𝑆𝑧)))
135, 12imbi12d 234 . . . . . 6 (𝑅 = 𝑆 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑦𝑆𝑧))))
1413ralbidv 2494 . . . . 5 (𝑅 = 𝑆 → (∀𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑦𝑆𝑧))))
15142ralbidv 2518 . . . 4 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑦𝑆𝑧))))
165notbid 668 . . . . . 6 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑆𝑦))
1716imbi1d 231 . . . . 5 (𝑅 = 𝑆 → ((¬ 𝑥𝑅𝑦𝑥 = 𝑦) ↔ (¬ 𝑥𝑆𝑦𝑥 = 𝑦)))
18172ralbidv 2518 . . . 4 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴𝑥𝑆𝑦𝑥 = 𝑦)))
1915, 18anbi12d 473 . . 3 (𝑅 = 𝑆 → ((∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑦𝑆𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑆𝑦𝑥 = 𝑦))))
201, 9, 193anbi123d 1323 . 2 (𝑅 = 𝑆 → ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) ↔ (𝑆 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑆𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑆𝑦𝑦𝑆𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑦𝑆𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑆𝑦𝑥 = 𝑦)))))
21 dftap2 7311 . 2 (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
22 dftap2 7311 . 2 (𝑆 TAp 𝐴 ↔ (𝑆 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑆𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑆𝑦𝑦𝑆𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑦𝑆𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑆𝑦𝑥 = 𝑦))))
2320, 21, 223bitr4g 223 1 (𝑅 = 𝑆 → (𝑅 TAp 𝐴𝑆 TAp 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wral 2472  wss 3153   class class class wbr 4029   × cxp 4657   TAp wtap 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-in 3159  df-ss 3166  df-br 4030  df-pap 7308  df-tap 7310
This theorem is referenced by:  2omotaplemst  7318  exmidapne  7320  exmidmotap  7321
  Copyright terms: Public domain W3C validator