ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tapeq2 GIF version

Theorem tapeq2 7427
Description: Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.)
Assertion
Ref Expression
tapeq2 (𝐴 = 𝐵 → (𝑅 TAp 𝐴𝑅 TAp 𝐵))

Proof of Theorem tapeq2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq12 4735 . . . . 5 ((𝐴 = 𝐵𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵))
21anidms 397 . . . 4 (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
32sseq2d 3254 . . 3 (𝐴 = 𝐵 → (𝑅 ⊆ (𝐴 × 𝐴) ↔ 𝑅 ⊆ (𝐵 × 𝐵)))
4 raleq 2728 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐵 ¬ 𝑥𝑅𝑥))
5 raleq 2728 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)))
65raleqbi1dv 2740 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)))
74, 6anbi12d 473 . . 3 (𝐴 = 𝐵 → ((∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐵 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))))
8 raleq 2728 . . . . . 6 (𝐴 = 𝐵 → (∀𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
98raleqbi1dv 2740 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
109raleqbi1dv 2740 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
11 raleq 2728 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦) ↔ ∀𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦)))
1211raleqbi1dv 2740 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦) ↔ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦)))
1310, 12anbi12d 473 . . 3 (𝐴 = 𝐵 → ((∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)) ↔ (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦))))
143, 7, 133anbi123d 1346 . 2 (𝐴 = 𝐵 → ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) ↔ (𝑅 ⊆ (𝐵 × 𝐵) ∧ (∀𝑥𝐵 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦)))))
15 dftap2 7425 . 2 (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
16 dftap2 7425 . 2 (𝑅 TAp 𝐵 ↔ (𝑅 ⊆ (𝐵 × 𝐵) ∧ (∀𝑥𝐵 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦))))
1714, 15, 163bitr4g 223 1 (𝐴 = 𝐵 → (𝑅 TAp 𝐴𝑅 TAp 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wral 2508  wss 3197   class class class wbr 4082   × cxp 4714   TAp wtap 7423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-in 3203  df-ss 3210  df-opab 4145  df-xp 4722  df-pap 7422  df-tap 7424
This theorem is referenced by:  exmidmotap  7435
  Copyright terms: Public domain W3C validator