ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tapeq2 GIF version

Theorem tapeq2 7378
Description: Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.)
Assertion
Ref Expression
tapeq2 (𝐴 = 𝐵 → (𝑅 TAp 𝐴𝑅 TAp 𝐵))

Proof of Theorem tapeq2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq12 4699 . . . . 5 ((𝐴 = 𝐵𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵))
21anidms 397 . . . 4 (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
32sseq2d 3225 . . 3 (𝐴 = 𝐵 → (𝑅 ⊆ (𝐴 × 𝐴) ↔ 𝑅 ⊆ (𝐵 × 𝐵)))
4 raleq 2703 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐵 ¬ 𝑥𝑅𝑥))
5 raleq 2703 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)))
65raleqbi1dv 2715 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)))
74, 6anbi12d 473 . . 3 (𝐴 = 𝐵 → ((∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐵 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))))
8 raleq 2703 . . . . . 6 (𝐴 = 𝐵 → (∀𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
98raleqbi1dv 2715 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
109raleqbi1dv 2715 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
11 raleq 2703 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦) ↔ ∀𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦)))
1211raleqbi1dv 2715 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦) ↔ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦)))
1310, 12anbi12d 473 . . 3 (𝐴 = 𝐵 → ((∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)) ↔ (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦))))
143, 7, 133anbi123d 1325 . 2 (𝐴 = 𝐵 → ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) ↔ (𝑅 ⊆ (𝐵 × 𝐵) ∧ (∀𝑥𝐵 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦)))))
15 dftap2 7376 . 2 (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
16 dftap2 7376 . 2 (𝑅 TAp 𝐵 ↔ (𝑅 ⊆ (𝐵 × 𝐵) ∧ (∀𝑥𝐵 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐵𝑦𝐵𝑥𝑅𝑦𝑥 = 𝑦))))
1714, 15, 163bitr4g 223 1 (𝐴 = 𝐵 → (𝑅 TAp 𝐴𝑅 TAp 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wral 2485  wss 3168   class class class wbr 4048   × cxp 4678   TAp wtap 7374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-in 3174  df-ss 3181  df-opab 4111  df-xp 4686  df-pap 7373  df-tap 7375
This theorem is referenced by:  exmidmotap  7386
  Copyright terms: Public domain W3C validator