| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabgf | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabgf.1 | ⊢ Ⅎ𝑥𝐴 |
| elabgf.2 | ⊢ Ⅎ𝑥𝜓 |
| elabgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabgf | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfab1 2349 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 3 | 1, 2 | nfel 2356 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
| 4 | elabgf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfbi 1611 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 6 | eleq1 2267 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 7 | elabgf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | bibi12d 235 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
| 9 | abid 2192 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 10 | 1, 5, 8, 9 | vtoclgf 2830 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 {cab 2190 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: elabf 2915 elabg 2918 elab3gf 2922 elrabf 2926 bj-intabssel 15589 |
| Copyright terms: Public domain | W3C validator |