ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabgf GIF version

Theorem elabgf 2821
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1 𝑥𝐴
elabgf.2 𝑥𝜓
elabgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabgf (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2 𝑥𝐴
2 nfab1 2281 . . . 4 𝑥{𝑥𝜑}
31, 2nfel 2288 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
4 elabgf.2 . . 3 𝑥𝜓
53, 4nfbi 1568 . 2 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 eleq1 2200 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
7 elabgf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
86, 7bibi12d 234 . 2 (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
9 abid 2125 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
101, 5, 8, 9vtoclgf 2739 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wnf 1436  wcel 1480  {cab 2123  wnfc 2266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683
This theorem is referenced by:  elabf  2822  elabg  2825  elab3gf  2829  elrabf  2833  bj-intabssel  12985
  Copyright terms: Public domain W3C validator