ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem4 GIF version

Theorem exmidontriimlem4 7336
Description: Lemma for exmidontriim 7337. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem4.a (𝜑𝐴 ∈ On)
exmidontriimlem4.b (𝜑𝐵 ∈ On)
exmidontriimlem4.em (𝜑EXMID)
exmidontriimlem4.h (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
Assertion
Ref Expression
exmidontriimlem4 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Distinct variable group:   𝑦,𝐴,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑦,𝑧)

Proof of Theorem exmidontriimlem4
Dummy variables 𝑏 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . 3 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2 eqeq2 2215 . . 3 (𝑏 = 𝐵 → (𝐴 = 𝑏𝐴 = 𝐵))
3 eleq1 2268 . . 3 (𝑏 = 𝐵 → (𝑏𝐴𝐵𝐴))
41, 2, 33orbi123d 1324 . 2 (𝑏 = 𝐵 → ((𝐴𝑏𝐴 = 𝑏𝑏𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
5 eleq2w 2267 . . . . . . 7 (𝑏 = 𝑤 → (𝐴𝑏𝐴𝑤))
6 eqeq2 2215 . . . . . . 7 (𝑏 = 𝑤 → (𝐴 = 𝑏𝐴 = 𝑤))
7 eleq1w 2266 . . . . . . 7 (𝑏 = 𝑤 → (𝑏𝐴𝑤𝐴))
85, 6, 73orbi123d 1324 . . . . . 6 (𝑏 = 𝑤 → ((𝐴𝑏𝐴 = 𝑏𝑏𝐴) ↔ (𝐴𝑤𝐴 = 𝑤𝑤𝐴)))
98imbi2d 230 . . . . 5 (𝑏 = 𝑤 → ((𝜑 → (𝐴𝑏𝐴 = 𝑏𝑏𝐴)) ↔ (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))))
10 exmidontriimlem4.a . . . . . . . 8 (𝜑𝐴 ∈ On)
1110adantl 277 . . . . . . 7 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → 𝐴 ∈ On)
12 simpll 527 . . . . . . 7 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → 𝑏 ∈ On)
13 exmidontriimlem4.em . . . . . . . 8 (𝜑EXMID)
1413adantl 277 . . . . . . 7 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → EXMID)
15 exmidontriimlem4.h . . . . . . . 8 (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
1615adantl 277 . . . . . . 7 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
17 simplr 528 . . . . . . . . . 10 ((((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) ∧ 𝑣𝑏) → 𝜑)
18 eleq2w 2267 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → (𝐴𝑤𝐴𝑣))
19 eqeq2 2215 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → (𝐴 = 𝑤𝐴 = 𝑣))
20 eleq1w 2266 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → (𝑤𝐴𝑣𝐴))
2118, 19, 203orbi123d 1324 . . . . . . . . . . . 12 (𝑤 = 𝑣 → ((𝐴𝑤𝐴 = 𝑤𝑤𝐴) ↔ (𝐴𝑣𝐴 = 𝑣𝑣𝐴)))
2221imbi2d 230 . . . . . . . . . . 11 (𝑤 = 𝑣 → ((𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴)) ↔ (𝜑 → (𝐴𝑣𝐴 = 𝑣𝑣𝐴))))
23 simpllr 534 . . . . . . . . . . 11 ((((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) ∧ 𝑣𝑏) → ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴)))
24 simpr 110 . . . . . . . . . . 11 ((((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) ∧ 𝑣𝑏) → 𝑣𝑏)
2522, 23, 24rspcdva 2882 . . . . . . . . . 10 ((((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) ∧ 𝑣𝑏) → (𝜑 → (𝐴𝑣𝐴 = 𝑣𝑣𝐴)))
2617, 25mpd 13 . . . . . . . . 9 ((((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) ∧ 𝑣𝑏) → (𝐴𝑣𝐴 = 𝑣𝑣𝐴))
2726ralrimiva 2579 . . . . . . . 8 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → ∀𝑣𝑏 (𝐴𝑣𝐴 = 𝑣𝑣𝐴))
28 eleq2w 2267 . . . . . . . . . 10 (𝑣 = 𝑦 → (𝐴𝑣𝐴𝑦))
29 eqeq2 2215 . . . . . . . . . 10 (𝑣 = 𝑦 → (𝐴 = 𝑣𝐴 = 𝑦))
30 eleq1w 2266 . . . . . . . . . 10 (𝑣 = 𝑦 → (𝑣𝐴𝑦𝐴))
3128, 29, 303orbi123d 1324 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝐴𝑣𝐴 = 𝑣𝑣𝐴) ↔ (𝐴𝑦𝐴 = 𝑦𝑦𝐴)))
3231cbvralv 2738 . . . . . . . 8 (∀𝑣𝑏 (𝐴𝑣𝐴 = 𝑣𝑣𝐴) ↔ ∀𝑦𝑏 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
3327, 32sylib 122 . . . . . . 7 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → ∀𝑦𝑏 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
3411, 12, 14, 16, 33exmidontriimlem3 7335 . . . . . 6 (((𝑏 ∈ On ∧ ∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴))) ∧ 𝜑) → (𝐴𝑏𝐴 = 𝑏𝑏𝐴))
3534exp31 364 . . . . 5 (𝑏 ∈ On → (∀𝑤𝑏 (𝜑 → (𝐴𝑤𝐴 = 𝑤𝑤𝐴)) → (𝜑 → (𝐴𝑏𝐴 = 𝑏𝑏𝐴))))
369, 35tfis2 4633 . . . 4 (𝑏 ∈ On → (𝜑 → (𝐴𝑏𝐴 = 𝑏𝑏𝐴)))
3736impcom 125 . . 3 ((𝜑𝑏 ∈ On) → (𝐴𝑏𝐴 = 𝑏𝑏𝐴))
3837ralrimiva 2579 . 2 (𝜑 → ∀𝑏 ∈ On (𝐴𝑏𝐴 = 𝑏𝑏𝐴))
39 exmidontriimlem4.b . 2 (𝜑𝐵 ∈ On)
404, 38, 39rspcdva 2882 1 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 980   = wceq 1373  wcel 2176  wral 2484  EXMIDwem 4238  Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-uni 3851  df-tr 4143  df-exmid 4239  df-iord 4413  df-on 4415
This theorem is referenced by:  exmidontriim  7337
  Copyright terms: Public domain W3C validator