| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | GIF version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | isset 2780 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: elex22 2789 elex2 2790 ceqsalt 2800 ceqsalg 2802 cgsexg 2809 cgsex2g 2810 cgsex4g 2811 vtoclgft 2825 vtocleg 2848 vtoclegft 2849 spc2egv 2867 spc2gv 2868 spc3egv 2869 spc3gv 2870 eqvincg 2901 tpid3g 3753 iinexgm 4209 copsex2t 4302 copsex2g 4303 ralxfr2d 4524 rexxfr2d 4525 fliftf 5886 eloprabga 6050 ovmpt4g 6086 spc2ed 6337 eroveu 6731 supelti 7125 genpassl 7667 genpassu 7668 eqord1 8586 nn1suc 9085 bj-inex 16012 |
| Copyright terms: Public domain | W3C validator |