![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elisset | GIF version |
Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | isset 2766 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elex22 2775 elex2 2776 ceqsalt 2786 ceqsalg 2788 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 vtoclgft 2810 vtocleg 2831 vtoclegft 2832 spc2egv 2850 spc2gv 2851 spc3egv 2852 spc3gv 2853 eqvincg 2884 tpid3g 3733 iinexgm 4183 copsex2t 4274 copsex2g 4275 ralxfr2d 4495 rexxfr2d 4496 fliftf 5842 eloprabga 6005 ovmpt4g 6041 spc2ed 6286 eroveu 6680 supelti 7061 genpassl 7584 genpassu 7585 eqord1 8502 nn1suc 9001 bj-inex 15399 |
Copyright terms: Public domain | W3C validator |