Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elisset | GIF version |
Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | isset 2732 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: elex22 2741 elex2 2742 ceqsalt 2752 ceqsalg 2754 cgsexg 2761 cgsex2g 2762 cgsex4g 2763 vtoclgft 2776 vtocleg 2797 vtoclegft 2798 spc2egv 2816 spc2gv 2817 spc3egv 2818 spc3gv 2819 eqvincg 2850 tpid3g 3691 iinexgm 4133 copsex2t 4223 copsex2g 4224 ralxfr2d 4442 rexxfr2d 4443 fliftf 5767 eloprabga 5929 ovmpt4g 5964 spc2ed 6201 eroveu 6592 supelti 6967 genpassl 7465 genpassu 7466 eqord1 8381 nn1suc 8876 bj-inex 13789 |
Copyright terms: Public domain | W3C validator |