![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elisset | GIF version |
Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | isset 2766 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elex22 2775 elex2 2776 ceqsalt 2786 ceqsalg 2788 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 vtoclgft 2811 vtocleg 2832 vtoclegft 2833 spc2egv 2851 spc2gv 2852 spc3egv 2853 spc3gv 2854 eqvincg 2885 tpid3g 3734 iinexgm 4184 copsex2t 4275 copsex2g 4276 ralxfr2d 4496 rexxfr2d 4497 fliftf 5843 eloprabga 6006 ovmpt4g 6042 spc2ed 6288 eroveu 6682 supelti 7063 genpassl 7586 genpassu 7587 eqord1 8504 nn1suc 9003 bj-inex 15469 |
Copyright terms: Public domain | W3C validator |