| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | GIF version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | isset 2777 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: elex22 2786 elex2 2787 ceqsalt 2797 ceqsalg 2799 cgsexg 2806 cgsex2g 2807 cgsex4g 2808 vtoclgft 2822 vtocleg 2843 vtoclegft 2844 spc2egv 2862 spc2gv 2863 spc3egv 2864 spc3gv 2865 eqvincg 2896 tpid3g 3747 iinexgm 4197 copsex2t 4288 copsex2g 4289 ralxfr2d 4510 rexxfr2d 4511 fliftf 5867 eloprabga 6031 ovmpt4g 6067 spc2ed 6318 eroveu 6712 supelti 7103 genpassl 7636 genpassu 7637 eqord1 8555 nn1suc 9054 bj-inex 15776 |
| Copyright terms: Public domain | W3C validator |