| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | GIF version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | isset 2778 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elex22 2787 elex2 2788 ceqsalt 2798 ceqsalg 2800 cgsexg 2807 cgsex2g 2808 cgsex4g 2809 vtoclgft 2823 vtocleg 2844 vtoclegft 2845 spc2egv 2863 spc2gv 2864 spc3egv 2865 spc3gv 2866 eqvincg 2897 tpid3g 3748 iinexgm 4198 copsex2t 4289 copsex2g 4290 ralxfr2d 4511 rexxfr2d 4512 fliftf 5868 eloprabga 6032 ovmpt4g 6068 spc2ed 6319 eroveu 6713 supelti 7104 genpassl 7637 genpassu 7638 eqord1 8556 nn1suc 9055 bj-inex 15843 |
| Copyright terms: Public domain | W3C validator |