| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | GIF version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | isset 2806 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elex22 2815 elex2 2816 ceqsalt 2826 ceqsalg 2828 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 vtoclgft 2851 vtocleg 2874 vtoclegft 2875 spc2egv 2893 spc2gv 2894 spc3egv 2895 spc3gv 2896 eqvincg 2927 tpid3g 3781 iinexgm 4237 copsex2t 4330 copsex2g 4331 ralxfr2d 4554 rexxfr2d 4555 fliftf 5922 eloprabga 6090 ovmpt4g 6126 spc2ed 6377 eroveu 6771 supelti 7165 genpassl 7707 genpassu 7708 eqord1 8626 nn1suc 9125 bj-inex 16228 |
| Copyright terms: Public domain | W3C validator |