ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1a GIF version

Theorem eleq1a 2259
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
eleq1a (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))

Proof of Theorem eleq1a
StepHypRef Expression
1 eleq1 2250 . 2 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
21biimprcd 160 1 (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-cleq 2180  df-clel 2183
This theorem is referenced by:  elex22  2764  elex2  2765  reu6  2938  disjne  3488  ssimaex  5590  fnex  5751  f1ocnv2d  6089  mpoexw  6228  tfrlem8  6333  eroprf  6642  ac6sfi  6912  recclnq  7405  prnmaddl  7503  renegcl  8232  nn0ind-raph  9384  iccid  9939  4sqlem1  12400  4sqlem4  12404  lssvneln0  13562  lss1d  13572  lspsn  13605  rnglidlmmgm  13685  opnneiid  13960  metrest  14302  coseq0negpitopi  14553  bj-nn0suc  15012  bj-inf2vnlem2  15019  bj-nn0sucALT  15026
  Copyright terms: Public domain W3C validator