![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 160 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: elex22 2775 elex2 2776 reu6 2949 disjne 3500 ssimaex 5618 fnex 5780 f1ocnv2d 6122 mpoexw 6266 tfrlem8 6371 eroprf 6682 ac6sfi 6954 recclnq 7452 prnmaddl 7550 mpomulf 8009 renegcl 8280 nn0ind-raph 9434 iccid 9991 4sqlem1 12526 4sqlem4 12530 4sqlem11 12539 lssvneln0 13869 lss1d 13879 lspsn 13912 rnglidlmmgm 13992 opnneiid 14332 metrest 14674 coseq0negpitopi 14971 bj-nn0suc 15456 bj-inf2vnlem2 15463 bj-nn0sucALT 15470 |
Copyright terms: Public domain | W3C validator |