ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1a GIF version

Theorem eleq1a 2242
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
eleq1a (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))

Proof of Theorem eleq1a
StepHypRef Expression
1 eleq1 2233 . 2 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
21biimprcd 159 1 (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  elex22  2745  elex2  2746  reu6  2919  disjne  3468  ssimaex  5557  fnex  5718  f1ocnv2d  6053  mpoexw  6192  tfrlem8  6297  eroprf  6606  ac6sfi  6876  recclnq  7354  prnmaddl  7452  renegcl  8180  nn0ind-raph  9329  iccid  9882  4sqlem1  12340  4sqlem4  12344  opnneiid  12958  metrest  13300  coseq0negpitopi  13551  bj-nn0suc  13999  bj-inf2vnlem2  14006  bj-nn0sucALT  14013
  Copyright terms: Public domain W3C validator