![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2250 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 160 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: elex22 2764 elex2 2765 reu6 2938 disjne 3488 ssimaex 5590 fnex 5751 f1ocnv2d 6089 mpoexw 6228 tfrlem8 6333 eroprf 6642 ac6sfi 6912 recclnq 7405 prnmaddl 7503 renegcl 8232 nn0ind-raph 9384 iccid 9939 4sqlem1 12400 4sqlem4 12404 lssvneln0 13562 lss1d 13572 lspsn 13605 rnglidlmmgm 13685 opnneiid 13960 metrest 14302 coseq0negpitopi 14553 bj-nn0suc 15012 bj-inf2vnlem2 15019 bj-nn0sucALT 15026 |
Copyright terms: Public domain | W3C validator |