ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1a GIF version

Theorem eleq1a 2249
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
eleq1a (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))

Proof of Theorem eleq1a
StepHypRef Expression
1 eleq1 2240 . 2 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
21biimprcd 160 1 (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173
This theorem is referenced by:  elex22  2754  elex2  2755  reu6  2928  disjne  3478  ssimaex  5579  fnex  5740  f1ocnv2d  6077  mpoexw  6216  tfrlem8  6321  eroprf  6630  ac6sfi  6900  recclnq  7393  prnmaddl  7491  renegcl  8220  nn0ind-raph  9372  iccid  9927  4sqlem1  12388  4sqlem4  12392  lssvneln0  13464  lss1d  13475  lspsn  13507  opnneiid  13749  metrest  14091  coseq0negpitopi  14342  bj-nn0suc  14801  bj-inf2vnlem2  14808  bj-nn0sucALT  14815
  Copyright terms: Public domain W3C validator