![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2150 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 158 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: elex22 2634 elex2 2635 reu6 2804 disjne 3336 ssimaex 5365 fnex 5519 f1ocnv2d 5848 tfrlem8 6083 eroprf 6385 ac6sfi 6614 recclnq 6951 prnmaddl 7049 renegcl 7743 nn0ind-raph 8863 iccid 9343 bj-nn0suc 11859 bj-inf2vnlem2 11866 bj-nn0sucALT 11873 |
Copyright terms: Public domain | W3C validator |