| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 160 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: elex22 2789 elex2 2790 reu6 2966 disjne 3518 ssimaex 5652 fnex 5818 f1ocnv2d 6162 mpoexw 6311 tfrlem8 6416 eroprf 6727 ac6sfi 7009 recclnq 7520 prnmaddl 7618 mpomulf 8077 renegcl 8348 nn0ind-raph 9505 iccid 10062 4sqlem1 12781 4sqlem4 12785 4sqlem11 12794 lssvneln0 14205 lss1d 14215 lspsn 14248 rnglidlmmgm 14328 opnneiid 14706 metrest 15048 coseq0negpitopi 15378 bj-nn0suc 16034 bj-inf2vnlem2 16041 bj-nn0sucALT 16048 |
| Copyright terms: Public domain | W3C validator |