| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 160 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: elex22 2778 elex2 2779 reu6 2953 disjne 3505 ssimaex 5625 fnex 5787 f1ocnv2d 6131 mpoexw 6280 tfrlem8 6385 eroprf 6696 ac6sfi 6968 recclnq 7478 prnmaddl 7576 mpomulf 8035 renegcl 8306 nn0ind-raph 9462 iccid 10019 4sqlem1 12584 4sqlem4 12588 4sqlem11 12597 lssvneln0 14007 lss1d 14017 lspsn 14050 rnglidlmmgm 14130 opnneiid 14508 metrest 14850 coseq0negpitopi 15180 bj-nn0suc 15718 bj-inf2vnlem2 15725 bj-nn0sucALT 15732 |
| Copyright terms: Public domain | W3C validator |