ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1a GIF version

Theorem eleq1a 2278
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
eleq1a (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))

Proof of Theorem eleq1a
StepHypRef Expression
1 eleq1 2269 . 2 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
21biimprcd 160 1 (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-clel 2202
This theorem is referenced by:  elex22  2789  elex2  2790  reu6  2966  disjne  3518  ssimaex  5652  fnex  5818  f1ocnv2d  6162  mpoexw  6311  tfrlem8  6416  eroprf  6727  ac6sfi  7009  recclnq  7520  prnmaddl  7618  mpomulf  8077  renegcl  8348  nn0ind-raph  9505  iccid  10062  4sqlem1  12781  4sqlem4  12785  4sqlem11  12794  lssvneln0  14205  lss1d  14215  lspsn  14248  rnglidlmmgm  14328  opnneiid  14706  metrest  15048  coseq0negpitopi  15378  bj-nn0suc  16034  bj-inf2vnlem2  16041  bj-nn0sucALT  16048
  Copyright terms: Public domain W3C validator