| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 160 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: elex22 2815 elex2 2816 reu6 2992 disjne 3545 ssimaex 5694 fnex 5860 f1ocnv2d 6208 mpoexw 6357 tfrlem8 6462 eroprf 6773 ac6sfi 7056 recclnq 7575 prnmaddl 7673 mpomulf 8132 renegcl 8403 nn0ind-raph 9560 iccid 10117 4sqlem1 12906 4sqlem4 12910 4sqlem11 12919 lssvneln0 14331 lss1d 14341 lspsn 14374 rnglidlmmgm 14454 opnneiid 14832 metrest 15174 coseq0negpitopi 15504 bj-nn0suc 16285 bj-inf2vnlem2 16292 bj-nn0sucALT 16299 |
| Copyright terms: Public domain | W3C validator |