Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq1a | GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 159 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: elex22 2741 elex2 2742 reu6 2915 disjne 3462 ssimaex 5547 fnex 5707 f1ocnv2d 6042 mpoexw 6181 tfrlem8 6286 eroprf 6594 ac6sfi 6864 recclnq 7333 prnmaddl 7431 renegcl 8159 nn0ind-raph 9308 iccid 9861 4sqlem1 12318 4sqlem4 12322 opnneiid 12804 metrest 13146 coseq0negpitopi 13397 bj-nn0suc 13846 bj-inf2vnlem2 13853 bj-nn0sucALT 13860 |
Copyright terms: Public domain | W3C validator |