ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1a GIF version

Theorem eleq1a 2268
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
eleq1a (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))

Proof of Theorem eleq1a
StepHypRef Expression
1 eleq1 2259 . 2 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
21biimprcd 160 1 (𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  elex22  2778  elex2  2779  reu6  2953  disjne  3505  ssimaex  5625  fnex  5787  f1ocnv2d  6131  mpoexw  6280  tfrlem8  6385  eroprf  6696  ac6sfi  6968  recclnq  7478  prnmaddl  7576  mpomulf  8035  renegcl  8306  nn0ind-raph  9462  iccid  10019  4sqlem1  12584  4sqlem4  12588  4sqlem11  12597  lssvneln0  14007  lss1d  14017  lspsn  14050  rnglidlmmgm  14130  opnneiid  14508  metrest  14850  coseq0negpitopi  15180  bj-nn0suc  15718  bj-inf2vnlem2  15725  bj-nn0sucALT  15732
  Copyright terms: Public domain W3C validator