Step | Hyp | Ref
| Expression |
1 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) |
2 | | nfcv 2308 |
. . . 4
⊢
Ⅎ𝑦(𝑅 “ {𝐴}) |
3 | | nfrab1 2645 |
. . . 4
⊢
Ⅎ𝑦{𝑦 ∈ ∪ 𝐾 ∣ 〈𝐴, 𝑦〉 ∈ 𝑅} |
4 | | txtop 12900 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top) |
5 | 4 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝐽 ×t 𝐾) ∈ Top) |
6 | | simprl 521 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → 𝑅 ∈ (𝐽 ×t 𝐾)) |
7 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ ∪ (𝐽
×t 𝐾) =
∪ (𝐽 ×t 𝐾) |
8 | 7 | eltopss 12647 |
. . . . . . . . . . . 12
⊢ (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → 𝑅 ⊆ ∪ (𝐽 ×t 𝐾)) |
9 | 5, 6, 8 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → 𝑅 ⊆ ∪ (𝐽 ×t 𝐾)) |
10 | | imasnopn.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = ∪
𝐽 |
11 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐾 =
∪ 𝐾 |
12 | 10, 11 | txuni 12903 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × ∪ 𝐾) =
∪ (𝐽 ×t 𝐾)) |
13 | 12 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑋 × ∪ 𝐾) = ∪
(𝐽 ×t
𝐾)) |
14 | 9, 13 | sseqtrrd 3181 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → 𝑅 ⊆ (𝑋 × ∪ 𝐾)) |
15 | | imass1 4979 |
. . . . . . . . . 10
⊢ (𝑅 ⊆ (𝑋 × ∪ 𝐾) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × ∪ 𝐾) “ {𝐴})) |
16 | 14, 15 | syl 14 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × ∪ 𝐾) “ {𝐴})) |
17 | | xpimasn 5052 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑋 → ((𝑋 × ∪ 𝐾) “ {𝐴}) = ∪ 𝐾) |
18 | 17 | ad2antll 483 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → ((𝑋 × ∪ 𝐾) “ {𝐴}) = ∪ 𝐾) |
19 | 16, 18 | sseqtrd 3180 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ⊆ ∪
𝐾) |
20 | 19 | sseld 3141 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦 ∈ ∪ 𝐾)) |
21 | 20 | pm4.71rd 392 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 ∈ ∪ 𝐾 ∧ 𝑦 ∈ (𝑅 “ {𝐴})))) |
22 | | elimasng 4972 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 〈𝐴, 𝑦〉 ∈ 𝑅)) |
23 | 22 | elvd 2731 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 〈𝐴, 𝑦〉 ∈ 𝑅)) |
24 | 23 | ad2antll 483 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 〈𝐴, 𝑦〉 ∈ 𝑅)) |
25 | 24 | anbi2d 460 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → ((𝑦 ∈ ∪ 𝐾 ∧ 𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦 ∈ ∪ 𝐾 ∧ 〈𝐴, 𝑦〉 ∈ 𝑅))) |
26 | 21, 25 | bitrd 187 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 ∈ ∪ 𝐾 ∧ 〈𝐴, 𝑦〉 ∈ 𝑅))) |
27 | | rabid 2641 |
. . . . 5
⊢ (𝑦 ∈ {𝑦 ∈ ∪ 𝐾 ∣ 〈𝐴, 𝑦〉 ∈ 𝑅} ↔ (𝑦 ∈ ∪ 𝐾 ∧ 〈𝐴, 𝑦〉 ∈ 𝑅)) |
28 | 26, 27 | bitr4di 197 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦 ∈ ∪ 𝐾 ∣ 〈𝐴, 𝑦〉 ∈ 𝑅})) |
29 | 1, 2, 3, 28 | eqrd 3160 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) = {𝑦 ∈ ∪ 𝐾 ∣ 〈𝐴, 𝑦〉 ∈ 𝑅}) |
30 | | eqid 2165 |
. . . 4
⊢ (𝑦 ∈ ∪ 𝐾
↦ 〈𝐴, 𝑦〉) = (𝑦 ∈ ∪ 𝐾 ↦ 〈𝐴, 𝑦〉) |
31 | 30 | mptpreima 5097 |
. . 3
⊢ (◡(𝑦 ∈ ∪ 𝐾 ↦ 〈𝐴, 𝑦〉) “ 𝑅) = {𝑦 ∈ ∪ 𝐾 ∣ 〈𝐴, 𝑦〉 ∈ 𝑅} |
32 | 29, 31 | eqtr4di 2217 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) = (◡(𝑦 ∈ ∪ 𝐾 ↦ 〈𝐴, 𝑦〉) “ 𝑅)) |
33 | 11 | toptopon 12656 |
. . . . . 6
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
34 | 33 | biimpi 119 |
. . . . 5
⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
35 | 34 | ad2antlr 481 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
36 | 10 | toptopon 12656 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
37 | 36 | biimpi 119 |
. . . . . 6
⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋)) |
38 | 37 | ad2antrr 480 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
39 | | simprr 522 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
40 | 35, 38, 39 | cnmptc 12922 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ ∪ 𝐾 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
41 | 35 | cnmptid 12921 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ ∪ 𝐾 ↦ 𝑦) ∈ (𝐾 Cn 𝐾)) |
42 | 35, 40, 41 | cnmpt1t 12925 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑦 ∈ ∪ 𝐾 ↦ 〈𝐴, 𝑦〉) ∈ (𝐾 Cn (𝐽 ×t 𝐾))) |
43 | | cnima 12860 |
. . 3
⊢ (((𝑦 ∈ ∪ 𝐾
↦ 〈𝐴, 𝑦〉) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → (◡(𝑦 ∈ ∪ 𝐾 ↦ 〈𝐴, 𝑦〉) “ 𝑅) ∈ 𝐾) |
44 | 42, 6, 43 | syl2anc 409 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (◡(𝑦 ∈ ∪ 𝐾 ↦ 〈𝐴, 𝑦〉) “ 𝑅) ∈ 𝐾) |
45 | 32, 44 | eqeltrd 2243 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾) |