ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasnopn GIF version

Theorem imasnopn 14815
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1 𝑋 = 𝐽
Assertion
Ref Expression
imasnopn (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)

Proof of Theorem imasnopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . 4 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋))
2 nfcv 2349 . . . 4 𝑦(𝑅 “ {𝐴})
3 nfrab1 2687 . . . 4 𝑦{𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4 txtop 14776 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
54adantr 276 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
6 simprl 529 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ∈ (𝐽 ×t 𝐾))
7 eqid 2206 . . . . . . . . . . . . 13 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
87eltopss 14525 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → 𝑅 (𝐽 ×t 𝐾))
95, 6, 8syl2anc 411 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
10 imasnopn.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
11 eqid 2206 . . . . . . . . . . . . 13 𝐾 = 𝐾
1210, 11txuni 14779 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
1312adantr 276 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
149, 13sseqtrrd 3233 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝐾))
15 imass1 5062 . . . . . . . . . 10 (𝑅 ⊆ (𝑋 × 𝐾) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
1614, 15syl 14 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
17 xpimasn 5136 . . . . . . . . . 10 (𝐴𝑋 → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1817ad2antll 491 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1916, 18sseqtrd 3232 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝐾)
2019sseld 3193 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦 𝐾))
2120pm4.71rd 394 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴}))))
22 elimasng 5055 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2322elvd 2778 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2423ad2antll 491 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2524anbi2d 464 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
2621, 25bitrd 188 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
27 rabid 2683 . . . . 5 (𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2826, 27bitr4di 198 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
291, 2, 3, 28eqrd 3212 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
30 eqid 2206 . . . 4 (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) = (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩)
3130mptpreima 5181 . . 3 ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
3229, 31eqtr4di 2257 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
3311toptopon 14534 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3433biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
3534ad2antlr 489 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘ 𝐾))
3610toptopon 14534 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3736biimpi 120 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
3837ad2antrr 488 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
39 simprr 531 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐴𝑋)
4035, 38, 39cnmptc 14798 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝐴) ∈ (𝐾 Cn 𝐽))
4135cnmptid 14797 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝑦) ∈ (𝐾 Cn 𝐾))
4235, 40, 41cnmpt1t 14801 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
43 cnima 14736 . . 3 (((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4442, 6, 43syl2anc 411 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4532, 44eqeltrd 2283 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  wss 3167  {csn 3634  cop 3637   cuni 3852  cmpt 4109   × cxp 4677  ccnv 4678  cima 4682  cfv 5276  (class class class)co 5951  Topctop 14513  TopOnctopon 14526   Cn ccn 14701   ×t ctx 14768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-topgen 13136  df-top 14514  df-topon 14527  df-bases 14559  df-cn 14704  df-cnp 14705  df-tx 14769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator