ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasnopn GIF version

Theorem imasnopn 14938
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1 𝑋 = 𝐽
Assertion
Ref Expression
imasnopn (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)

Proof of Theorem imasnopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1554 . . . 4 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋))
2 nfcv 2352 . . . 4 𝑦(𝑅 “ {𝐴})
3 nfrab1 2691 . . . 4 𝑦{𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4 txtop 14899 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
54adantr 276 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
6 simprl 529 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ∈ (𝐽 ×t 𝐾))
7 eqid 2209 . . . . . . . . . . . . 13 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
87eltopss 14648 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → 𝑅 (𝐽 ×t 𝐾))
95, 6, 8syl2anc 411 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
10 imasnopn.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
11 eqid 2209 . . . . . . . . . . . . 13 𝐾 = 𝐾
1210, 11txuni 14902 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
1312adantr 276 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
149, 13sseqtrrd 3243 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝐾))
15 imass1 5079 . . . . . . . . . 10 (𝑅 ⊆ (𝑋 × 𝐾) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
1614, 15syl 14 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
17 xpimasn 5153 . . . . . . . . . 10 (𝐴𝑋 → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1817ad2antll 491 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1916, 18sseqtrd 3242 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝐾)
2019sseld 3203 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦 𝐾))
2120pm4.71rd 394 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴}))))
22 elimasng 5072 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2322elvd 2784 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2423ad2antll 491 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2524anbi2d 464 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
2621, 25bitrd 188 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
27 rabid 2687 . . . . 5 (𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2826, 27bitr4di 198 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
291, 2, 3, 28eqrd 3222 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
30 eqid 2209 . . . 4 (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) = (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩)
3130mptpreima 5198 . . 3 ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
3229, 31eqtr4di 2260 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
3311toptopon 14657 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3433biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
3534ad2antlr 489 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘ 𝐾))
3610toptopon 14657 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3736biimpi 120 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
3837ad2antrr 488 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
39 simprr 531 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐴𝑋)
4035, 38, 39cnmptc 14921 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝐴) ∈ (𝐾 Cn 𝐽))
4135cnmptid 14920 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝑦) ∈ (𝐾 Cn 𝐾))
4235, 40, 41cnmpt1t 14924 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
43 cnima 14859 . . 3 (((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4442, 6, 43syl2anc 411 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4532, 44eqeltrd 2286 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  wss 3177  {csn 3646  cop 3649   cuni 3867  cmpt 4124   × cxp 4694  ccnv 4695  cima 4699  cfv 5294  (class class class)co 5974  Topctop 14636  TopOnctopon 14649   Cn ccn 14824   ×t ctx 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-topgen 13259  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator