ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgpropd GIF version

Theorem subrgpropd 13809
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgrcl 13782 . . . 4 (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring)
21a1i 9 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring))
3 subrgrcl 13782 . . . 4 (𝑠 ∈ (SubRing‘𝐿) → 𝐿 ∈ Ring)
4 subrgpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
5 subrgpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
6 subrgpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrgpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7ringpropd 13594 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
93, 8imbitrrid 156 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐿) → 𝐾 ∈ Ring))
108adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
114ineq2d 3364 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐾) = (Base‘𝐾))
15 simplr 528 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐾 ∈ Ring)
16 simpr 110 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝑠 ∈ V)
1713, 14, 15, 16ressbasd 12745 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1817elvd 2768 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2229 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3364 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
2524adantr 276 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐿 ∈ Ring)
2622, 23, 25, 16ressbasd 12745 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2726elvd 2768 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2821, 27eqtrd 2229 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
29 elinel2 3350 . . . . . . . . . 10 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
30 elinel2 3350 . . . . . . . . . 10 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
3129, 30anim12i 338 . . . . . . . . 9 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
326adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
33 eqidd 2197 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g𝐾))
3413, 33, 16, 15ressplusgd 12806 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3534elvd 2768 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3635oveqdr 5950 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
37 eqidd 2197 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g𝐿))
3822, 37, 16, 25ressplusgd 12806 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3938elvd 2768 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
4039oveqdr 5950 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4132, 36, 403eqtr3d 2237 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4231, 41sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
437adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
44 vex 2766 . . . . . . . . . . . . 13 𝑠 ∈ V
45 eqid 2196 . . . . . . . . . . . . . 14 (𝐾s 𝑠) = (𝐾s 𝑠)
46 eqid 2196 . . . . . . . . . . . . . 14 (.r𝐾) = (.r𝐾)
4745, 46ressmulrg 12822 . . . . . . . . . . . . 13 ((𝑠 ∈ V ∧ 𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4844, 47mpan 424 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4948adantl 277 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
5049oveqdr 5950 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
51 eqid 2196 . . . . . . . . . . . . 13 (𝐿s 𝑠) = (𝐿s 𝑠)
52 eqid 2196 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
5351, 52ressmulrg 12822 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝐿 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5444, 24, 53sylancr 414 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5554oveqdr 5950 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5643, 50, 553eqtr3d 2237 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5731, 56sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5819, 28, 42, 57ringpropd 13594 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
5910, 58anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
604, 5eqtr3d 2231 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
6160sseq2d 3213 . . . . . . . 8 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
6261adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
634adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
645adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
65 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐾 ∈ Ring)
6663, 64, 43, 65, 24rngidpropdg 13702 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (1r𝐾) = (1r𝐿))
6766eleq1d 2265 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
6862, 67anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
6959, 68anbi12d 473 . . . . 5 ((𝜑𝐾 ∈ Ring) → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
70 eqid 2196 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
71 eqid 2196 . . . . . 6 (1r𝐾) = (1r𝐾)
7270, 71issubrg 13777 . . . . 5 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
73 eqid 2196 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
74 eqid 2196 . . . . . 6 (1r𝐿) = (1r𝐿)
7573, 74issubrg 13777 . . . . 5 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
7669, 72, 753bitr4g 223 . . . 4 ((𝜑𝐾 ∈ Ring) → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7776ex 115 . . 3 (𝜑 → (𝐾 ∈ Ring → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))))
782, 9, 77pm5.21ndd 706 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7978eqrdv 2194 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  +gcplusg 12755  .rcmulr 12756  1rcur 13515  Ringcrg 13552  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-mgp 13477  df-ur 13516  df-ring 13554  df-subrg 13775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator