ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgpropd GIF version

Theorem subrgpropd 13375
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgrcl 13353 . . . 4 (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring)
21a1i 9 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring))
3 subrgrcl 13353 . . . 4 (𝑠 ∈ (SubRing‘𝐿) → 𝐿 ∈ Ring)
4 subrgpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
5 subrgpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
6 subrgpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrgpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7ringpropd 13223 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
93, 8imbitrrid 156 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐿) → 𝐾 ∈ Ring))
108adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
114ineq2d 3338 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐾) = (Base‘𝐾))
15 simplr 528 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐾 ∈ Ring)
16 simpr 110 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝑠 ∈ V)
1713, 14, 15, 16ressbasd 12530 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1817elvd 2744 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2210 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3338 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
2524adantr 276 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐿 ∈ Ring)
2622, 23, 25, 16ressbasd 12530 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2726elvd 2744 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2821, 27eqtrd 2210 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
29 elinel2 3324 . . . . . . . . . 10 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
30 elinel2 3324 . . . . . . . . . 10 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
3129, 30anim12i 338 . . . . . . . . 9 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
326adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
33 eqidd 2178 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g𝐾))
3413, 33, 16, 15ressplusgd 12590 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3534elvd 2744 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3635oveqdr 5906 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
37 eqidd 2178 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g𝐿))
3822, 37, 16, 25ressplusgd 12590 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3938elvd 2744 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
4039oveqdr 5906 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4132, 36, 403eqtr3d 2218 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4231, 41sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
437adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
44 vex 2742 . . . . . . . . . . . . 13 𝑠 ∈ V
45 eqid 2177 . . . . . . . . . . . . . 14 (𝐾s 𝑠) = (𝐾s 𝑠)
46 eqid 2177 . . . . . . . . . . . . . 14 (.r𝐾) = (.r𝐾)
4745, 46ressmulrg 12606 . . . . . . . . . . . . 13 ((𝑠 ∈ V ∧ 𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4844, 47mpan 424 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4948adantl 277 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
5049oveqdr 5906 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
51 eqid 2177 . . . . . . . . . . . . 13 (𝐿s 𝑠) = (𝐿s 𝑠)
52 eqid 2177 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
5351, 52ressmulrg 12606 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝐿 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5444, 24, 53sylancr 414 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5554oveqdr 5906 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5643, 50, 553eqtr3d 2218 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5731, 56sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5819, 28, 42, 57ringpropd 13223 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
5910, 58anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
604, 5eqtr3d 2212 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
6160sseq2d 3187 . . . . . . . 8 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
6261adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
634adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
645adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
65 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐾 ∈ Ring)
6663, 64, 43, 65, 24rngidpropdg 13321 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (1r𝐾) = (1r𝐿))
6766eleq1d 2246 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
6862, 67anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
6959, 68anbi12d 473 . . . . 5 ((𝜑𝐾 ∈ Ring) → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
70 eqid 2177 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
71 eqid 2177 . . . . . 6 (1r𝐾) = (1r𝐾)
7270, 71issubrg 13348 . . . . 5 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
73 eqid 2177 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
74 eqid 2177 . . . . . 6 (1r𝐿) = (1r𝐿)
7573, 74issubrg 13348 . . . . 5 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
7669, 72, 753bitr4g 223 . . . 4 ((𝜑𝐾 ∈ Ring) → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7776ex 115 . . 3 (𝜑 → (𝐾 ∈ Ring → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))))
782, 9, 77pm5.21ndd 705 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7978eqrdv 2175 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739  cin 3130  wss 3131  cfv 5218  (class class class)co 5878  Basecbs 12465  s cress 12466  +gcplusg 12539  .rcmulr 12540  1rcur 13148  Ringcrg 13185  SubRingcsubrg 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-mulr 12553  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-grp 12886  df-mgp 13137  df-ur 13149  df-ring 13187  df-subrg 13346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator