Step | Hyp | Ref
| Expression |
1 | | subrgrcl 13353 |
. . . 4
⊢ (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring) |
2 | 1 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring)) |
3 | | subrgrcl 13353 |
. . . 4
⊢ (𝑠 ∈ (SubRing‘𝐿) → 𝐿 ∈ Ring) |
4 | | subrgpropd.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
5 | | subrgpropd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
6 | | subrgpropd.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | | subrgpropd.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
8 | 4, 5, 6, 7 | ringpropd 13223 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
9 | 3, 8 | imbitrrid 156 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (SubRing‘𝐿) → 𝐾 ∈ Ring)) |
10 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
11 | 4 | ineq2d 3338 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐾))) |
12 | 11 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐾))) |
13 | | eqidd 2178 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐾 ↾s 𝑠) = (𝐾 ↾s 𝑠)) |
14 | | eqidd 2178 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐾) = (Base‘𝐾)) |
15 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐾 ∈ Ring) |
16 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝑠 ∈ V) |
17 | 13, 14, 15, 16 | ressbasd 12530 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠))) |
18 | 17 | elvd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠))) |
19 | 12, 18 | eqtrd 2210 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∩ 𝐵) = (Base‘(𝐾 ↾s 𝑠))) |
20 | 5 | ineq2d 3338 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐿))) |
21 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐿))) |
22 | | eqidd 2178 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐿 ↾s 𝑠) = (𝐿 ↾s 𝑠)) |
23 | | eqidd 2178 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐿) = (Base‘𝐿)) |
24 | 8 | biimpa 296 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐿 ∈ Ring) |
25 | 24 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐿 ∈ Ring) |
26 | 22, 23, 25, 16 | ressbasd 12530 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠))) |
27 | 26 | elvd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠))) |
28 | 21, 27 | eqtrd 2210 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∩ 𝐵) = (Base‘(𝐿 ↾s 𝑠))) |
29 | | elinel2 3324 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑠 ∩ 𝐵) → 𝑥 ∈ 𝐵) |
30 | | elinel2 3324 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝑠 ∩ 𝐵) → 𝑦 ∈ 𝐵) |
31 | 29, 30 | anim12i 338 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
32 | 6 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
33 | | eqidd 2178 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g‘𝐾) = (+g‘𝐾)) |
34 | 13, 33, 16, 15 | ressplusgd 12590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g‘𝐾) = (+g‘(𝐾 ↾s 𝑠))) |
35 | 34 | elvd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) →
(+g‘𝐾) =
(+g‘(𝐾
↾s 𝑠))) |
36 | 35 | oveqdr 5906 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦)) |
37 | | eqidd 2178 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g‘𝐿) = (+g‘𝐿)) |
38 | 22, 37, 16, 25 | ressplusgd 12590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g‘𝐿) = (+g‘(𝐿 ↾s 𝑠))) |
39 | 38 | elvd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) →
(+g‘𝐿) =
(+g‘(𝐿
↾s 𝑠))) |
40 | 39 | oveqdr 5906 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
41 | 32, 36, 40 | 3eqtr3d 2218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
42 | 31, 41 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
43 | 7 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
44 | | vex 2742 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
45 | | eqid 2177 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ↾s 𝑠) = (𝐾 ↾s 𝑠) |
46 | | eqid 2177 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝐾) = (.r‘𝐾) |
47 | 45, 46 | ressmulrg 12606 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ V ∧ 𝐾 ∈ Ring) →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
48 | 44, 47 | mpan 424 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Ring →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
49 | 48 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
50 | 49 | oveqdr 5906 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦)) |
51 | | eqid 2177 |
. . . . . . . . . . . . 13
⊢ (𝐿 ↾s 𝑠) = (𝐿 ↾s 𝑠) |
52 | | eqid 2177 |
. . . . . . . . . . . . 13
⊢
(.r‘𝐿) = (.r‘𝐿) |
53 | 51, 52 | ressmulrg 12606 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ V ∧ 𝐿 ∈ Ring) →
(.r‘𝐿) =
(.r‘(𝐿
↾s 𝑠))) |
54 | 44, 24, 53 | sylancr 414 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) →
(.r‘𝐿) =
(.r‘(𝐿
↾s 𝑠))) |
55 | 54 | oveqdr 5906 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
56 | 43, 50, 55 | 3eqtr3d 2218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
57 | 31, 56 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
58 | 19, 28, 42, 57 | ringpropd 13223 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((𝐾 ↾s 𝑠) ∈ Ring ↔ (𝐿 ↾s 𝑠) ∈ Ring)) |
59 | 10, 58 | anbi12d 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring))) |
60 | 4, 5 | eqtr3d 2212 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
61 | 60 | sseq2d 3187 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿))) |
62 | 61 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿))) |
63 | 4 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾)) |
64 | 5 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿)) |
65 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐾 ∈ Ring) |
66 | 63, 64, 43, 65, 24 | rngidpropdg 13321 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) →
(1r‘𝐾) =
(1r‘𝐿)) |
67 | 66 | eleq1d 2246 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) →
((1r‘𝐾)
∈ 𝑠 ↔
(1r‘𝐿)
∈ 𝑠)) |
68 | 62, 67 | anbi12d 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠))) |
69 | 59, 68 | anbi12d 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠)))) |
70 | | eqid 2177 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
71 | | eqid 2177 |
. . . . . 6
⊢
(1r‘𝐾) = (1r‘𝐾) |
72 | 70, 71 | issubrg 13348 |
. . . . 5
⊢ (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠))) |
73 | | eqid 2177 |
. . . . . 6
⊢
(Base‘𝐿) =
(Base‘𝐿) |
74 | | eqid 2177 |
. . . . . 6
⊢
(1r‘𝐿) = (1r‘𝐿) |
75 | 73, 74 | issubrg 13348 |
. . . . 5
⊢ (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠))) |
76 | 69, 72, 75 | 3bitr4g 223 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))) |
77 | 76 | ex 115 |
. . 3
⊢ (𝜑 → (𝐾 ∈ Ring → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))) |
78 | 2, 9, 77 | pm5.21ndd 705 |
. 2
⊢ (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))) |
79 | 78 | eqrdv 2175 |
1
⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) |