Step | Hyp | Ref
| Expression |
1 | | subrgrcl 13352 |
. . . 4
β’ (π β (SubRingβπΎ) β πΎ β Ring) |
2 | 1 | a1i 9 |
. . 3
β’ (π β (π β (SubRingβπΎ) β πΎ β Ring)) |
3 | | subrgrcl 13352 |
. . . 4
β’ (π β (SubRingβπΏ) β πΏ β Ring) |
4 | | subrgpropd.1 |
. . . . 5
β’ (π β π΅ = (BaseβπΎ)) |
5 | | subrgpropd.2 |
. . . . 5
β’ (π β π΅ = (BaseβπΏ)) |
6 | | subrgpropd.3 |
. . . . 5
β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
7 | | subrgpropd.4 |
. . . . 5
β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(.rβπΎ)π¦) = (π₯(.rβπΏ)π¦)) |
8 | 4, 5, 6, 7 | ringpropd 13222 |
. . . 4
β’ (π β (πΎ β Ring β πΏ β Ring)) |
9 | 3, 8 | imbitrrid 156 |
. . 3
β’ (π β (π β (SubRingβπΏ) β πΎ β Ring)) |
10 | 8 | adantr 276 |
. . . . . . 7
β’ ((π β§ πΎ β Ring) β (πΎ β Ring β πΏ β Ring)) |
11 | 4 | ineq2d 3338 |
. . . . . . . . . 10
β’ (π β (π β© π΅) = (π β© (BaseβπΎ))) |
12 | 11 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β (π β© π΅) = (π β© (BaseβπΎ))) |
13 | | eqidd 2178 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β (πΎ βΎs π ) = (πΎ βΎs π )) |
14 | | eqidd 2178 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β (BaseβπΎ) = (BaseβπΎ)) |
15 | | simplr 528 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β πΎ β Ring) |
16 | | simpr 110 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β π β V) |
17 | 13, 14, 15, 16 | ressbasd 12529 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ π β V) β (π β© (BaseβπΎ)) = (Baseβ(πΎ βΎs π ))) |
18 | 17 | elvd 2744 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β (π β© (BaseβπΎ)) = (Baseβ(πΎ βΎs π ))) |
19 | 12, 18 | eqtrd 2210 |
. . . . . . . 8
β’ ((π β§ πΎ β Ring) β (π β© π΅) = (Baseβ(πΎ βΎs π ))) |
20 | 5 | ineq2d 3338 |
. . . . . . . . . 10
β’ (π β (π β© π΅) = (π β© (BaseβπΏ))) |
21 | 20 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β (π β© π΅) = (π β© (BaseβπΏ))) |
22 | | eqidd 2178 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β (πΏ βΎs π ) = (πΏ βΎs π )) |
23 | | eqidd 2178 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β (BaseβπΏ) = (BaseβπΏ)) |
24 | 8 | biimpa 296 |
. . . . . . . . . . . 12
β’ ((π β§ πΎ β Ring) β πΏ β Ring) |
25 | 24 | adantr 276 |
. . . . . . . . . . 11
β’ (((π β§ πΎ β Ring) β§ π β V) β πΏ β Ring) |
26 | 22, 23, 25, 16 | ressbasd 12529 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ π β V) β (π β© (BaseβπΏ)) = (Baseβ(πΏ βΎs π ))) |
27 | 26 | elvd 2744 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β (π β© (BaseβπΏ)) = (Baseβ(πΏ βΎs π ))) |
28 | 21, 27 | eqtrd 2210 |
. . . . . . . 8
β’ ((π β§ πΎ β Ring) β (π β© π΅) = (Baseβ(πΏ βΎs π ))) |
29 | | elinel2 3324 |
. . . . . . . . . 10
β’ (π₯ β (π β© π΅) β π₯ β π΅) |
30 | | elinel2 3324 |
. . . . . . . . . 10
β’ (π¦ β (π β© π΅) β π¦ β π΅) |
31 | 29, 30 | anim12i 338 |
. . . . . . . . 9
β’ ((π₯ β (π β© π΅) β§ π¦ β (π β© π΅)) β (π₯ β π΅ β§ π¦ β π΅)) |
32 | 6 | adantlr 477 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
33 | | eqidd 2178 |
. . . . . . . . . . . . 13
β’ (((π β§ πΎ β Ring) β§ π β V) β (+gβπΎ) = (+gβπΎ)) |
34 | 13, 33, 16, 15 | ressplusgd 12589 |
. . . . . . . . . . . 12
β’ (((π β§ πΎ β Ring) β§ π β V) β (+gβπΎ) = (+gβ(πΎ βΎs π ))) |
35 | 34 | elvd 2744 |
. . . . . . . . . . 11
β’ ((π β§ πΎ β Ring) β
(+gβπΎ) =
(+gβ(πΎ
βΎs π ))) |
36 | 35 | oveqdr 5905 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβ(πΎ βΎs π ))π¦)) |
37 | | eqidd 2178 |
. . . . . . . . . . . . 13
β’ (((π β§ πΎ β Ring) β§ π β V) β (+gβπΏ) = (+gβπΏ)) |
38 | 22, 37, 16, 25 | ressplusgd 12589 |
. . . . . . . . . . . 12
β’ (((π β§ πΎ β Ring) β§ π β V) β (+gβπΏ) = (+gβ(πΏ βΎs π ))) |
39 | 38 | elvd 2744 |
. . . . . . . . . . 11
β’ ((π β§ πΎ β Ring) β
(+gβπΏ) =
(+gβ(πΏ
βΎs π ))) |
40 | 39 | oveqdr 5905 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΏ)π¦) = (π₯(+gβ(πΏ βΎs π ))π¦)) |
41 | 32, 36, 40 | 3eqtr3d 2218 |
. . . . . . . . 9
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβ(πΎ βΎs π ))π¦) = (π₯(+gβ(πΏ βΎs π ))π¦)) |
42 | 31, 41 | sylan2 286 |
. . . . . . . 8
β’ (((π β§ πΎ β Ring) β§ (π₯ β (π β© π΅) β§ π¦ β (π β© π΅))) β (π₯(+gβ(πΎ βΎs π ))π¦) = (π₯(+gβ(πΏ βΎs π ))π¦)) |
43 | 7 | adantlr 477 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(.rβπΎ)π¦) = (π₯(.rβπΏ)π¦)) |
44 | | vex 2742 |
. . . . . . . . . . . . 13
β’ π β V |
45 | | eqid 2177 |
. . . . . . . . . . . . . 14
β’ (πΎ βΎs π ) = (πΎ βΎs π ) |
46 | | eqid 2177 |
. . . . . . . . . . . . . 14
β’
(.rβπΎ) = (.rβπΎ) |
47 | 45, 46 | ressmulrg 12605 |
. . . . . . . . . . . . 13
β’ ((π β V β§ πΎ β Ring) β
(.rβπΎ) =
(.rβ(πΎ
βΎs π ))) |
48 | 44, 47 | mpan 424 |
. . . . . . . . . . . 12
β’ (πΎ β Ring β
(.rβπΎ) =
(.rβ(πΎ
βΎs π ))) |
49 | 48 | adantl 277 |
. . . . . . . . . . 11
β’ ((π β§ πΎ β Ring) β
(.rβπΎ) =
(.rβ(πΎ
βΎs π ))) |
50 | 49 | oveqdr 5905 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(.rβπΎ)π¦) = (π₯(.rβ(πΎ βΎs π ))π¦)) |
51 | | eqid 2177 |
. . . . . . . . . . . . 13
β’ (πΏ βΎs π ) = (πΏ βΎs π ) |
52 | | eqid 2177 |
. . . . . . . . . . . . 13
β’
(.rβπΏ) = (.rβπΏ) |
53 | 51, 52 | ressmulrg 12605 |
. . . . . . . . . . . 12
β’ ((π β V β§ πΏ β Ring) β
(.rβπΏ) =
(.rβ(πΏ
βΎs π ))) |
54 | 44, 24, 53 | sylancr 414 |
. . . . . . . . . . 11
β’ ((π β§ πΎ β Ring) β
(.rβπΏ) =
(.rβ(πΏ
βΎs π ))) |
55 | 54 | oveqdr 5905 |
. . . . . . . . . 10
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(.rβπΏ)π¦) = (π₯(.rβ(πΏ βΎs π ))π¦)) |
56 | 43, 50, 55 | 3eqtr3d 2218 |
. . . . . . . . 9
β’ (((π β§ πΎ β Ring) β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(.rβ(πΎ βΎs π ))π¦) = (π₯(.rβ(πΏ βΎs π ))π¦)) |
57 | 31, 56 | sylan2 286 |
. . . . . . . 8
β’ (((π β§ πΎ β Ring) β§ (π₯ β (π β© π΅) β§ π¦ β (π β© π΅))) β (π₯(.rβ(πΎ βΎs π ))π¦) = (π₯(.rβ(πΏ βΎs π ))π¦)) |
58 | 19, 28, 42, 57 | ringpropd 13222 |
. . . . . . 7
β’ ((π β§ πΎ β Ring) β ((πΎ βΎs π ) β Ring β (πΏ βΎs π ) β Ring)) |
59 | 10, 58 | anbi12d 473 |
. . . . . 6
β’ ((π β§ πΎ β Ring) β ((πΎ β Ring β§ (πΎ βΎs π ) β Ring) β (πΏ β Ring β§ (πΏ βΎs π ) β Ring))) |
60 | 4, 5 | eqtr3d 2212 |
. . . . . . . . 9
β’ (π β (BaseβπΎ) = (BaseβπΏ)) |
61 | 60 | sseq2d 3187 |
. . . . . . . 8
β’ (π β (π β (BaseβπΎ) β π β (BaseβπΏ))) |
62 | 61 | adantr 276 |
. . . . . . 7
β’ ((π β§ πΎ β Ring) β (π β (BaseβπΎ) β π β (BaseβπΏ))) |
63 | 4 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β π΅ = (BaseβπΎ)) |
64 | 5 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β π΅ = (BaseβπΏ)) |
65 | | simpr 110 |
. . . . . . . . 9
β’ ((π β§ πΎ β Ring) β πΎ β Ring) |
66 | 63, 64, 43, 65, 24 | rngidpropdg 13320 |
. . . . . . . 8
β’ ((π β§ πΎ β Ring) β
(1rβπΎ) =
(1rβπΏ)) |
67 | 66 | eleq1d 2246 |
. . . . . . 7
β’ ((π β§ πΎ β Ring) β
((1rβπΎ)
β π β
(1rβπΏ)
β π )) |
68 | 62, 67 | anbi12d 473 |
. . . . . 6
β’ ((π β§ πΎ β Ring) β ((π β (BaseβπΎ) β§ (1rβπΎ) β π ) β (π β (BaseβπΏ) β§ (1rβπΏ) β π ))) |
69 | 59, 68 | anbi12d 473 |
. . . . 5
β’ ((π β§ πΎ β Ring) β (((πΎ β Ring β§ (πΎ βΎs π ) β Ring) β§ (π β (BaseβπΎ) β§ (1rβπΎ) β π )) β ((πΏ β Ring β§ (πΏ βΎs π ) β Ring) β§ (π β (BaseβπΏ) β§ (1rβπΏ) β π )))) |
70 | | eqid 2177 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
71 | | eqid 2177 |
. . . . . 6
β’
(1rβπΎ) = (1rβπΎ) |
72 | 70, 71 | issubrg 13347 |
. . . . 5
β’ (π β (SubRingβπΎ) β ((πΎ β Ring β§ (πΎ βΎs π ) β Ring) β§ (π β (BaseβπΎ) β§ (1rβπΎ) β π ))) |
73 | | eqid 2177 |
. . . . . 6
β’
(BaseβπΏ) =
(BaseβπΏ) |
74 | | eqid 2177 |
. . . . . 6
β’
(1rβπΏ) = (1rβπΏ) |
75 | 73, 74 | issubrg 13347 |
. . . . 5
β’ (π β (SubRingβπΏ) β ((πΏ β Ring β§ (πΏ βΎs π ) β Ring) β§ (π β (BaseβπΏ) β§ (1rβπΏ) β π ))) |
76 | 69, 72, 75 | 3bitr4g 223 |
. . . 4
β’ ((π β§ πΎ β Ring) β (π β (SubRingβπΎ) β π β (SubRingβπΏ))) |
77 | 76 | ex 115 |
. . 3
β’ (π β (πΎ β Ring β (π β (SubRingβπΎ) β π β (SubRingβπΏ)))) |
78 | 2, 9, 77 | pm5.21ndd 705 |
. 2
β’ (π β (π β (SubRingβπΎ) β π β (SubRingβπΏ))) |
79 | 78 | eqrdv 2175 |
1
β’ (π β (SubRingβπΎ) = (SubRingβπΏ)) |