ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgpropd GIF version

Theorem subrgpropd 14065
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgrcl 14038 . . . 4 (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring)
21a1i 9 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring))
3 subrgrcl 14038 . . . 4 (𝑠 ∈ (SubRing‘𝐿) → 𝐿 ∈ Ring)
4 subrgpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
5 subrgpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
6 subrgpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrgpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7ringpropd 13850 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
93, 8imbitrrid 156 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐿) → 𝐾 ∈ Ring))
108adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
114ineq2d 3376 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2207 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2207 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐾) = (Base‘𝐾))
15 simplr 528 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐾 ∈ Ring)
16 simpr 110 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝑠 ∈ V)
1713, 14, 15, 16ressbasd 12949 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1817elvd 2778 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2239 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3376 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2207 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2207 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
2524adantr 276 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐿 ∈ Ring)
2622, 23, 25, 16ressbasd 12949 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2726elvd 2778 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2821, 27eqtrd 2239 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
29 elinel2 3362 . . . . . . . . . 10 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
30 elinel2 3362 . . . . . . . . . 10 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
3129, 30anim12i 338 . . . . . . . . 9 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
326adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
33 eqidd 2207 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g𝐾))
3413, 33, 16, 15ressplusgd 13011 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3534elvd 2778 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3635oveqdr 5982 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
37 eqidd 2207 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g𝐿))
3822, 37, 16, 25ressplusgd 13011 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3938elvd 2778 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
4039oveqdr 5982 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4132, 36, 403eqtr3d 2247 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4231, 41sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
437adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
44 vex 2776 . . . . . . . . . . . . 13 𝑠 ∈ V
45 eqid 2206 . . . . . . . . . . . . . 14 (𝐾s 𝑠) = (𝐾s 𝑠)
46 eqid 2206 . . . . . . . . . . . . . 14 (.r𝐾) = (.r𝐾)
4745, 46ressmulrg 13027 . . . . . . . . . . . . 13 ((𝑠 ∈ V ∧ 𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4844, 47mpan 424 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4948adantl 277 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
5049oveqdr 5982 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
51 eqid 2206 . . . . . . . . . . . . 13 (𝐿s 𝑠) = (𝐿s 𝑠)
52 eqid 2206 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
5351, 52ressmulrg 13027 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝐿 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5444, 24, 53sylancr 414 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5554oveqdr 5982 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5643, 50, 553eqtr3d 2247 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5731, 56sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5819, 28, 42, 57ringpropd 13850 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
5910, 58anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
604, 5eqtr3d 2241 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
6160sseq2d 3225 . . . . . . . 8 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
6261adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
634adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
645adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
65 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐾 ∈ Ring)
6663, 64, 43, 65, 24rngidpropdg 13958 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (1r𝐾) = (1r𝐿))
6766eleq1d 2275 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
6862, 67anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
6959, 68anbi12d 473 . . . . 5 ((𝜑𝐾 ∈ Ring) → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
70 eqid 2206 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
71 eqid 2206 . . . . . 6 (1r𝐾) = (1r𝐾)
7270, 71issubrg 14033 . . . . 5 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
73 eqid 2206 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
74 eqid 2206 . . . . . 6 (1r𝐿) = (1r𝐿)
7573, 74issubrg 14033 . . . . 5 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
7669, 72, 753bitr4g 223 . . . 4 ((𝜑𝐾 ∈ Ring) → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7776ex 115 . . 3 (𝜑 → (𝐾 ∈ Ring → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))))
782, 9, 77pm5.21ndd 707 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7978eqrdv 2204 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  cin 3167  wss 3168  cfv 5277  (class class class)co 5954  Basecbs 12882  s cress 12883  +gcplusg 12959  .rcmulr 12960  1rcur 13771  Ringcrg 13808  SubRingcsubrg 14029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-mgp 13733  df-ur 13772  df-ring 13810  df-subrg 14031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator