ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgpropd GIF version

Theorem subrgpropd 14202
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgrcl 14175 . . . 4 (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring)
21a1i 9 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) → 𝐾 ∈ Ring))
3 subrgrcl 14175 . . . 4 (𝑠 ∈ (SubRing‘𝐿) → 𝐿 ∈ Ring)
4 subrgpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
5 subrgpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
6 subrgpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrgpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7ringpropd 13987 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
93, 8imbitrrid 156 . . 3 (𝜑 → (𝑠 ∈ (SubRing‘𝐿) → 𝐾 ∈ Ring))
108adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
114ineq2d 3405 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2230 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2230 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐾) = (Base‘𝐾))
15 simplr 528 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐾 ∈ Ring)
16 simpr 110 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝑠 ∈ V)
1713, 14, 15, 16ressbasd 13086 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1817elvd 2804 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2262 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3405 . . . . . . . . . 10 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2230 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2230 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
2524adantr 276 . . . . . . . . . . 11 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → 𝐿 ∈ Ring)
2622, 23, 25, 16ressbasd 13086 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2726elvd 2804 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2821, 27eqtrd 2262 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
29 elinel2 3391 . . . . . . . . . 10 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
30 elinel2 3391 . . . . . . . . . 10 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
3129, 30anim12i 338 . . . . . . . . 9 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
326adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
33 eqidd 2230 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g𝐾))
3413, 33, 16, 15ressplusgd 13148 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3534elvd 2804 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3635oveqdr 6022 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
37 eqidd 2230 . . . . . . . . . . . . 13 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g𝐿))
3822, 37, 16, 25ressplusgd 13148 . . . . . . . . . . . 12 (((𝜑𝐾 ∈ Ring) ∧ 𝑠 ∈ V) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3938elvd 2804 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
4039oveqdr 6022 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4132, 36, 403eqtr3d 2270 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
4231, 41sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
437adantlr 477 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
44 vex 2802 . . . . . . . . . . . . 13 𝑠 ∈ V
45 eqid 2229 . . . . . . . . . . . . . 14 (𝐾s 𝑠) = (𝐾s 𝑠)
46 eqid 2229 . . . . . . . . . . . . . 14 (.r𝐾) = (.r𝐾)
4745, 46ressmulrg 13164 . . . . . . . . . . . . 13 ((𝑠 ∈ V ∧ 𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4844, 47mpan 424 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4948adantl 277 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
5049oveqdr 6022 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
51 eqid 2229 . . . . . . . . . . . . 13 (𝐿s 𝑠) = (𝐿s 𝑠)
52 eqid 2229 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
5351, 52ressmulrg 13164 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝐿 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5444, 24, 53sylancr 414 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
5554oveqdr 6022 . . . . . . . . . 10 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5643, 50, 553eqtr3d 2270 . . . . . . . . 9 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5731, 56sylan2 286 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5819, 28, 42, 57ringpropd 13987 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
5910, 58anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
604, 5eqtr3d 2264 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
6160sseq2d 3254 . . . . . . . 8 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
6261adantr 276 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
634adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
645adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
65 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Ring) → 𝐾 ∈ Ring)
6663, 64, 43, 65, 24rngidpropdg 14095 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → (1r𝐾) = (1r𝐿))
6766eleq1d 2298 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
6862, 67anbi12d 473 . . . . . 6 ((𝜑𝐾 ∈ Ring) → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
6959, 68anbi12d 473 . . . . 5 ((𝜑𝐾 ∈ Ring) → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
70 eqid 2229 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
71 eqid 2229 . . . . . 6 (1r𝐾) = (1r𝐾)
7270, 71issubrg 14170 . . . . 5 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
73 eqid 2229 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
74 eqid 2229 . . . . . 6 (1r𝐿) = (1r𝐿)
7573, 74issubrg 14170 . . . . 5 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
7669, 72, 753bitr4g 223 . . . 4 ((𝜑𝐾 ∈ Ring) → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7776ex 115 . . 3 (𝜑 → (𝐾 ∈ Ring → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))))
782, 9, 77pm5.21ndd 710 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
7978eqrdv 2227 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  cfv 5314  (class class class)co 5994  Basecbs 13018  s cress 13019  +gcplusg 13096  .rcmulr 13097  1rcur 13908  Ringcrg 13945  SubRingcsubrg 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-mgp 13870  df-ur 13909  df-ring 13947  df-subrg 14168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator