ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elv GIF version

Theorem elv 2803
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2802), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
elv.1 (𝑥 ∈ V → 𝜑)
Assertion
Ref Expression
elv 𝜑

Proof of Theorem elv
StepHypRef Expression
1 vex 2802 . 2 𝑥 ∈ V
2 elv.1 . 2 (𝑥 ∈ V → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  xpiindim  4858  disjxp1  6380  ixpiinm  6869  ixpsnf1o  6881  iunfidisj  7109  ssfii  7137  fifo  7143  dcfi  7144  omp1eomlem  7257  exmidomniim  7304  bcval5  10980  rexfiuz  11495  fsum2dlemstep  11940  fsumcnv  11943  fisumcom2  11944  fsumconst  11960  modfsummodlemstep  11963  fsumabs  11971  fprodcllemf  12119  fprod2dlemstep  12128  fprodcnv  12131  fprodcom2fi  12132  fprodmodd  12147  4sqleminfi  12915  ennnfonelemim  12990  topnfn  13272  ptex  13292  prdsvallem  13300  prdsval  13301  xpsff1o  13377  ismgm  13385  issgrp  13431  ismnddef  13446  isnsg  13734  fnmgp  13880  isrng  13892  isring  13958  dfrhm2  14112  znval  14594  iuncld  14783  txbas  14926  txdis  14945  xmetunirn  15026  xmettxlem  15177  xmettx  15178  gausslemma2dlem1a  15731  isuhgrm  15865  isushgrm  15866  isupgren  15889  upgrex  15897  isumgren  15899  isuspgren  15949  isusgren  15950  pw1nct  16328
  Copyright terms: Public domain W3C validator