Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elv | GIF version |
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2733), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
Ref | Expression |
---|---|
elv | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . 2 ⊢ 𝑥 ∈ V | |
2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: xpiindim 4748 disjxp1 6215 ixpiinm 6702 ixpsnf1o 6714 iunfidisj 6923 ssfii 6951 fifo 6957 dcfi 6958 omp1eomlem 7071 exmidomniim 7117 bcval5 10697 rexfiuz 10953 fsum2dlemstep 11397 fsumcnv 11400 fisumcom2 11401 fsumconst 11417 modfsummodlemstep 11420 fsumabs 11428 fprodcllemf 11576 fprod2dlemstep 11585 fprodcnv 11588 fprodcom2fi 11589 fprodmodd 11604 ennnfonelemim 12379 topnfn 12584 ismgm 12611 issgrp 12644 ismnddef 12654 iuncld 12909 txbas 13052 txdis 13071 xmetunirn 13152 xmettxlem 13303 xmettx 13304 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |