ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elv GIF version

Theorem elv 2624
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2623), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
elv.1 (𝑥 ∈ V → 𝜑)
Assertion
Ref Expression
elv 𝜑

Proof of Theorem elv
StepHypRef Expression
1 vex 2623 . 2 𝑥 ∈ V
2 elv.1 . 2 (𝑥 ∈ V → 𝜑)
31, 2ax-mp 7 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1439  Vcvv 2620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-v 2622
This theorem is referenced by:  disjxp1  6015  ixpiinm  6495  ixpsnf1o  6507  iunfidisj  6709  fsum2dlemstep  10882  fsumcnv  10885  fisumcom2  10886  fsumconst  10902  modfsummodlemstep  10905  fsumabs  10913  topnfn  11711  iuncld  11869
  Copyright terms: Public domain W3C validator