| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | GIF version | ||
| Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2779), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
| Ref | Expression |
|---|---|
| elv | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: xpiindim 4833 disjxp1 6345 ixpiinm 6834 ixpsnf1o 6846 iunfidisj 7074 ssfii 7102 fifo 7108 dcfi 7109 omp1eomlem 7222 exmidomniim 7269 bcval5 10945 rexfiuz 11415 fsum2dlemstep 11860 fsumcnv 11863 fisumcom2 11864 fsumconst 11880 modfsummodlemstep 11883 fsumabs 11891 fprodcllemf 12039 fprod2dlemstep 12048 fprodcnv 12051 fprodcom2fi 12052 fprodmodd 12067 4sqleminfi 12835 ennnfonelemim 12910 topnfn 13191 ptex 13211 prdsvallem 13219 prdsval 13220 xpsff1o 13296 ismgm 13304 issgrp 13350 ismnddef 13365 isnsg 13653 fnmgp 13799 isrng 13811 isring 13877 dfrhm2 14031 znval 14513 iuncld 14702 txbas 14845 txdis 14864 xmetunirn 14945 xmettxlem 15096 xmettx 15097 gausslemma2dlem1a 15650 isuhgrm 15782 isushgrm 15783 isupgren 15806 upgrex 15814 isumgren 15816 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |