Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elv | GIF version |
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2729), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
Ref | Expression |
---|---|
elv | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . 2 ⊢ 𝑥 ∈ V | |
2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: xpiindim 4741 disjxp1 6204 ixpiinm 6690 ixpsnf1o 6702 iunfidisj 6911 ssfii 6939 fifo 6945 dcfi 6946 omp1eomlem 7059 exmidomniim 7105 bcval5 10676 rexfiuz 10931 fsum2dlemstep 11375 fsumcnv 11378 fisumcom2 11379 fsumconst 11395 modfsummodlemstep 11398 fsumabs 11406 fprodcllemf 11554 fprod2dlemstep 11563 fprodcnv 11566 fprodcom2fi 11567 fprodmodd 11582 ennnfonelemim 12357 topnfn 12561 ismgm 12588 iuncld 12755 txbas 12898 txdis 12917 xmetunirn 12998 xmettxlem 13149 xmettx 13150 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |