| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | GIF version | ||
| Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2802), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
| Ref | Expression |
|---|---|
| elv | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: xpiindim 4858 disjxp1 6380 ixpiinm 6869 ixpsnf1o 6881 iunfidisj 7109 ssfii 7137 fifo 7143 dcfi 7144 omp1eomlem 7257 exmidomniim 7304 bcval5 10980 rexfiuz 11495 fsum2dlemstep 11940 fsumcnv 11943 fisumcom2 11944 fsumconst 11960 modfsummodlemstep 11963 fsumabs 11971 fprodcllemf 12119 fprod2dlemstep 12128 fprodcnv 12131 fprodcom2fi 12132 fprodmodd 12147 4sqleminfi 12915 ennnfonelemim 12990 topnfn 13272 ptex 13292 prdsvallem 13300 prdsval 13301 xpsff1o 13377 ismgm 13385 issgrp 13431 ismnddef 13446 isnsg 13734 fnmgp 13880 isrng 13892 isring 13958 dfrhm2 14112 znval 14594 iuncld 14783 txbas 14926 txdis 14945 xmetunirn 15026 xmettxlem 15177 xmettx 15178 gausslemma2dlem1a 15731 isuhgrm 15865 isushgrm 15866 isupgren 15889 upgrex 15897 isumgren 15899 isuspgren 15949 isusgren 15950 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |