![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elv | GIF version |
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2763), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
Ref | Expression |
---|---|
elv | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . 2 ⊢ 𝑥 ∈ V | |
2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: xpiindim 4800 disjxp1 6291 ixpiinm 6780 ixpsnf1o 6792 iunfidisj 7007 ssfii 7035 fifo 7041 dcfi 7042 omp1eomlem 7155 exmidomniim 7202 bcval5 10837 rexfiuz 11136 fsum2dlemstep 11580 fsumcnv 11583 fisumcom2 11584 fsumconst 11600 modfsummodlemstep 11603 fsumabs 11611 fprodcllemf 11759 fprod2dlemstep 11768 fprodcnv 11771 fprodcom2fi 11772 fprodmodd 11787 4sqleminfi 12538 ennnfonelemim 12584 topnfn 12858 ptex 12878 xpsff1o 12935 ismgm 12943 issgrp 12989 ismnddef 13002 isnsg 13275 fnmgp 13421 isrng 13433 isring 13499 dfrhm2 13653 znval 14135 iuncld 14294 txbas 14437 txdis 14456 xmetunirn 14537 xmettxlem 14688 xmettx 14689 gausslemma2dlem1a 15215 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |