| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | GIF version | ||
| Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2774), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
| Ref | Expression |
|---|---|
| elv | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: xpiindim 4814 disjxp1 6321 ixpiinm 6810 ixpsnf1o 6822 iunfidisj 7047 ssfii 7075 fifo 7081 dcfi 7082 omp1eomlem 7195 exmidomniim 7242 bcval5 10906 rexfiuz 11271 fsum2dlemstep 11716 fsumcnv 11719 fisumcom2 11720 fsumconst 11736 modfsummodlemstep 11739 fsumabs 11747 fprodcllemf 11895 fprod2dlemstep 11904 fprodcnv 11907 fprodcom2fi 11908 fprodmodd 11923 4sqleminfi 12691 ennnfonelemim 12766 topnfn 13047 ptex 13067 prdsvallem 13075 prdsval 13076 xpsff1o 13152 ismgm 13160 issgrp 13206 ismnddef 13221 isnsg 13509 fnmgp 13655 isrng 13667 isring 13733 dfrhm2 13887 znval 14369 iuncld 14558 txbas 14701 txdis 14720 xmetunirn 14801 xmettxlem 14952 xmettx 14953 gausslemma2dlem1a 15506 pw1nct 15902 |
| Copyright terms: Public domain | W3C validator |