| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | GIF version | ||
| Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2775), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
| Ref | Expression |
|---|---|
| elv | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: xpiindim 4815 disjxp1 6322 ixpiinm 6811 ixpsnf1o 6823 iunfidisj 7048 ssfii 7076 fifo 7082 dcfi 7083 omp1eomlem 7196 exmidomniim 7243 bcval5 10908 rexfiuz 11300 fsum2dlemstep 11745 fsumcnv 11748 fisumcom2 11749 fsumconst 11765 modfsummodlemstep 11768 fsumabs 11776 fprodcllemf 11924 fprod2dlemstep 11933 fprodcnv 11936 fprodcom2fi 11937 fprodmodd 11952 4sqleminfi 12720 ennnfonelemim 12795 topnfn 13076 ptex 13096 prdsvallem 13104 prdsval 13105 xpsff1o 13181 ismgm 13189 issgrp 13235 ismnddef 13250 isnsg 13538 fnmgp 13684 isrng 13696 isring 13762 dfrhm2 13916 znval 14398 iuncld 14587 txbas 14730 txdis 14749 xmetunirn 14830 xmettxlem 14981 xmettx 14982 gausslemma2dlem1a 15535 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |