ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elv GIF version

Theorem elv 2775
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2774), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
elv.1 (𝑥 ∈ V → 𝜑)
Assertion
Ref Expression
elv 𝜑

Proof of Theorem elv
StepHypRef Expression
1 vex 2774 . 2 𝑥 ∈ V
2 elv.1 . 2 (𝑥 ∈ V → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773
This theorem is referenced by:  xpiindim  4814  disjxp1  6321  ixpiinm  6810  ixpsnf1o  6822  iunfidisj  7047  ssfii  7075  fifo  7081  dcfi  7082  omp1eomlem  7195  exmidomniim  7242  bcval5  10906  rexfiuz  11271  fsum2dlemstep  11716  fsumcnv  11719  fisumcom2  11720  fsumconst  11736  modfsummodlemstep  11739  fsumabs  11747  fprodcllemf  11895  fprod2dlemstep  11904  fprodcnv  11907  fprodcom2fi  11908  fprodmodd  11923  4sqleminfi  12691  ennnfonelemim  12766  topnfn  13047  ptex  13067  prdsvallem  13075  prdsval  13076  xpsff1o  13152  ismgm  13160  issgrp  13206  ismnddef  13221  isnsg  13509  fnmgp  13655  isrng  13667  isring  13733  dfrhm2  13887  znval  14369  iuncld  14558  txbas  14701  txdis  14720  xmetunirn  14801  xmettxlem  14952  xmettx  14953  gausslemma2dlem1a  15506  pw1nct  15902
  Copyright terms: Public domain W3C validator