ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elv GIF version

Theorem elv 2780
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2779), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
elv.1 (𝑥 ∈ V → 𝜑)
Assertion
Ref Expression
elv 𝜑

Proof of Theorem elv
StepHypRef Expression
1 vex 2779 . 2 𝑥 ∈ V
2 elv.1 . 2 (𝑥 ∈ V → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by:  xpiindim  4833  disjxp1  6345  ixpiinm  6834  ixpsnf1o  6846  iunfidisj  7074  ssfii  7102  fifo  7108  dcfi  7109  omp1eomlem  7222  exmidomniim  7269  bcval5  10945  rexfiuz  11415  fsum2dlemstep  11860  fsumcnv  11863  fisumcom2  11864  fsumconst  11880  modfsummodlemstep  11883  fsumabs  11891  fprodcllemf  12039  fprod2dlemstep  12048  fprodcnv  12051  fprodcom2fi  12052  fprodmodd  12067  4sqleminfi  12835  ennnfonelemim  12910  topnfn  13191  ptex  13211  prdsvallem  13219  prdsval  13220  xpsff1o  13296  ismgm  13304  issgrp  13350  ismnddef  13365  isnsg  13653  fnmgp  13799  isrng  13811  isring  13877  dfrhm2  14031  znval  14513  iuncld  14702  txbas  14845  txdis  14864  xmetunirn  14945  xmettxlem  15096  xmettx  15097  gausslemma2dlem1a  15650  isuhgrm  15782  isushgrm  15783  isupgren  15806  upgrex  15814  isumgren  15816  pw1nct  16142
  Copyright terms: Public domain W3C validator