| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | GIF version | ||
| Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2766), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
| Ref | Expression |
|---|---|
| elv | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: xpiindim 4804 disjxp1 6303 ixpiinm 6792 ixpsnf1o 6804 iunfidisj 7021 ssfii 7049 fifo 7055 dcfi 7056 omp1eomlem 7169 exmidomniim 7216 bcval5 10872 rexfiuz 11171 fsum2dlemstep 11616 fsumcnv 11619 fisumcom2 11620 fsumconst 11636 modfsummodlemstep 11639 fsumabs 11647 fprodcllemf 11795 fprod2dlemstep 11804 fprodcnv 11807 fprodcom2fi 11808 fprodmodd 11823 4sqleminfi 12591 ennnfonelemim 12666 topnfn 12946 ptex 12966 prdsvallem 12974 prdsval 12975 xpsff1o 13051 ismgm 13059 issgrp 13105 ismnddef 13120 isnsg 13408 fnmgp 13554 isrng 13566 isring 13632 dfrhm2 13786 znval 14268 iuncld 14435 txbas 14578 txdis 14597 xmetunirn 14678 xmettxlem 14829 xmettx 14830 gausslemma2dlem1a 15383 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |