![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elv | GIF version |
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2623), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
Ref | Expression |
---|---|
elv | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2623 | . 2 ⊢ 𝑥 ∈ V | |
2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1439 Vcvv 2620 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-v 2622 |
This theorem is referenced by: disjxp1 6015 ixpiinm 6495 ixpsnf1o 6507 iunfidisj 6709 fsum2dlemstep 10882 fsumcnv 10885 fisumcom2 10886 fsumconst 10902 modfsummodlemstep 10905 fsumabs 10913 topnfn 11711 iuncld 11869 |
Copyright terms: Public domain | W3C validator |