| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | GIF version | ||
| Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2766), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| elv.1 | ⊢ (𝑥 ∈ V → 𝜑) |
| Ref | Expression |
|---|---|
| elv | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elv.1 | . 2 ⊢ (𝑥 ∈ V → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: xpiindim 4804 disjxp1 6303 ixpiinm 6792 ixpsnf1o 6804 iunfidisj 7021 ssfii 7049 fifo 7055 dcfi 7056 omp1eomlem 7169 exmidomniim 7216 bcval5 10874 rexfiuz 11173 fsum2dlemstep 11618 fsumcnv 11621 fisumcom2 11622 fsumconst 11638 modfsummodlemstep 11641 fsumabs 11649 fprodcllemf 11797 fprod2dlemstep 11806 fprodcnv 11809 fprodcom2fi 11810 fprodmodd 11825 4sqleminfi 12593 ennnfonelemim 12668 topnfn 12948 ptex 12968 prdsvallem 12976 prdsval 12977 xpsff1o 13053 ismgm 13061 issgrp 13107 ismnddef 13122 isnsg 13410 fnmgp 13556 isrng 13568 isring 13634 dfrhm2 13788 znval 14270 iuncld 14459 txbas 14602 txdis 14621 xmetunirn 14702 xmettxlem 14853 xmettx 14854 gausslemma2dlem1a 15407 pw1nct 15758 |
| Copyright terms: Public domain | W3C validator |