Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2on0 | GIF version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 | ⊢ 2o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6408 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 6414 | . . 3 ⊢ 1o ∈ On | |
3 | nsuceq0g 4412 | . . 3 ⊢ (1o ∈ On → suc 1o ≠ ∅) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ≠ ∅ |
5 | 1, 4 | eqnetri 2368 | 1 ⊢ 2o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 ≠ wne 2345 ∅c0 3420 Oncon0 4357 suc csuc 4359 1oc1o 6400 2oc2o 6401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 df-1o 6407 df-2o 6408 |
This theorem is referenced by: snnen2oprc 6850 prarloclemcalc 7476 pwle2 14288 |
Copyright terms: Public domain | W3C validator |