Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2on0 | GIF version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 | ⊢ 2o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6396 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 6402 | . . 3 ⊢ 1o ∈ On | |
3 | nsuceq0g 4403 | . . 3 ⊢ (1o ∈ On → suc 1o ≠ ∅) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ≠ ∅ |
5 | 1, 4 | eqnetri 2363 | 1 ⊢ 2o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ≠ wne 2340 ∅c0 3414 Oncon0 4348 suc csuc 4350 1oc1o 6388 2oc2o 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-1o 6395 df-2o 6396 |
This theorem is referenced by: snnen2oprc 6838 prarloclemcalc 7464 pwle2 14031 |
Copyright terms: Public domain | W3C validator |