![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6455 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 4145 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 3726 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 2383 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2360 ∅c0 3437 {csn 3607 1oc1o 6435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-nul 4144 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-v 2754 df-dif 3146 df-un 3148 df-nul 3438 df-sn 3613 df-suc 4389 df-1o 6442 |
This theorem is referenced by: xp01disj 6459 xp01disjl 6460 djulclb 7085 djuinr 7093 eldju2ndl 7102 djune 7108 updjudhf 7109 updjudhcoinrg 7111 nninfisollemne 7160 nninfisol 7162 exmidomni 7171 fodjum 7175 fodju0 7176 ismkvnex 7184 mkvprop 7187 omniwomnimkv 7196 nninfwlporlemd 7201 nninfwlpoimlemginf 7205 2oneel 7286 1pi 7345 unct 12496 fnpr2o 12818 fnpr2ob 12819 fvpr0o 12820 fvpr1o 12821 fvprif 12822 xpsfrnel 12823 bj-charfunbi 15041 pwle2 15227 subctctexmid 15229 pw1nct 15231 peano3nninf 15235 nninfalllem1 15236 nninfall 15237 nninfsellemeq 15242 nninfsellemqall 15243 nninffeq 15248 |
Copyright terms: Public domain | W3C validator |