| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6496 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 3742 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2390 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2367 ∅c0 3451 {csn 3623 1oc1o 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-sn 3629 df-suc 4407 df-1o 6483 |
| This theorem is referenced by: xp01disj 6500 xp01disjl 6501 djulclb 7130 djuinr 7138 eldju2ndl 7147 djune 7153 updjudhf 7154 updjudhcoinrg 7156 nninfisollemne 7206 nninfisol 7208 exmidomni 7217 fodjum 7221 fodju0 7222 ismkvnex 7230 mkvprop 7233 omniwomnimkv 7242 nninfwlporlemd 7247 nninfwlpoimlemginf 7251 2oneel 7341 1pi 7401 nninfinf 10554 unct 12686 fnpr2o 13043 fnpr2ob 13044 fvpr0o 13045 fvpr1o 13046 fvprif 13047 xpsfrnel 13048 bj-charfunbi 15565 2omap 15750 pwle2 15753 subctctexmid 15755 pw1nct 15758 peano3nninf 15762 nninfalllem1 15763 nninfall 15764 nninfsellemeq 15769 nninfsellemqall 15770 nninffeq 15775 |
| Copyright terms: Public domain | W3C validator |