| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6565 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 3785 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2423 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 ∅c0 3491 {csn 3666 1oc1o 6545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-suc 4459 df-1o 6552 |
| This theorem is referenced by: xp01disj 6569 xp01disjl 6570 rex2dom 6961 djulclb 7210 djuinr 7218 eldju2ndl 7227 djune 7233 updjudhf 7234 updjudhcoinrg 7236 nninfisollemne 7286 nninfisol 7288 exmidomni 7297 fodjum 7301 fodju0 7302 ismkvnex 7310 mkvprop 7313 omniwomnimkv 7322 nninfwlporlemd 7327 nninfwlpoimlemginf 7331 pr2cv1 7356 2oneel 7430 1pi 7490 nninfinf 10652 unct 12999 fnpr2o 13358 fnpr2ob 13359 fvpr0o 13360 fvpr1o 13361 fvprif 13362 xpsfrnel 13363 bj-charfunbi 16104 2omap 16290 pwle2 16295 subctctexmid 16297 pw1nct 16300 peano3nninf 16304 nninfalllem1 16305 nninfall 16306 nninfsellemeq 16311 nninfsellemqall 16312 nninffeq 16317 |
| Copyright terms: Public domain | W3C validator |