![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6482 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 4156 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 3737 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 2387 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2364 ∅c0 3446 {csn 3618 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-suc 4402 df-1o 6469 |
This theorem is referenced by: xp01disj 6486 xp01disjl 6487 djulclb 7114 djuinr 7122 eldju2ndl 7131 djune 7137 updjudhf 7138 updjudhcoinrg 7140 nninfisollemne 7190 nninfisol 7192 exmidomni 7201 fodjum 7205 fodju0 7206 ismkvnex 7214 mkvprop 7217 omniwomnimkv 7226 nninfwlporlemd 7231 nninfwlpoimlemginf 7235 2oneel 7316 1pi 7375 nninfinf 10514 unct 12599 fnpr2o 12922 fnpr2ob 12923 fvpr0o 12924 fvpr1o 12925 fvprif 12926 xpsfrnel 12927 bj-charfunbi 15303 pwle2 15489 subctctexmid 15491 pw1nct 15493 peano3nninf 15497 nninfalllem1 15498 nninfall 15499 nninfsellemeq 15504 nninfsellemqall 15505 nninffeq 15510 |
Copyright terms: Public domain | W3C validator |