Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6397 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 3695 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 2359 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2336 ∅c0 3409 {csn 3576 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-suc 4349 df-1o 6384 |
This theorem is referenced by: xp01disj 6401 xp01disjl 6402 djulclb 7020 djuinr 7028 eldju2ndl 7037 djune 7043 updjudhf 7044 updjudhcoinrg 7046 nninfisollemne 7095 nninfisol 7097 exmidomni 7106 fodjum 7110 fodju0 7111 ismkvnex 7119 mkvprop 7122 omniwomnimkv 7131 1pi 7256 unct 12375 bj-charfunbi 13693 pwle2 13878 subctctexmid 13881 pw1nct 13883 peano3nninf 13887 nninfalllem1 13888 nninfall 13889 nninfsellemeq 13894 nninfsellemqall 13895 nninffeq 13900 |
Copyright terms: Public domain | W3C validator |