![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6484 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 4157 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 3738 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 2387 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2364 ∅c0 3447 {csn 3619 1oc1o 6464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4156 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 df-sn 3625 df-suc 4403 df-1o 6471 |
This theorem is referenced by: xp01disj 6488 xp01disjl 6489 djulclb 7116 djuinr 7124 eldju2ndl 7133 djune 7139 updjudhf 7140 updjudhcoinrg 7142 nninfisollemne 7192 nninfisol 7194 exmidomni 7203 fodjum 7207 fodju0 7208 ismkvnex 7216 mkvprop 7219 omniwomnimkv 7228 nninfwlporlemd 7233 nninfwlpoimlemginf 7237 2oneel 7318 1pi 7377 nninfinf 10517 unct 12602 fnpr2o 12925 fnpr2ob 12926 fvpr0o 12927 fvpr1o 12928 fvprif 12929 xpsfrnel 12930 bj-charfunbi 15373 pwle2 15559 subctctexmid 15561 pw1nct 15563 peano3nninf 15567 nninfalllem1 15568 nninfall 15569 nninfsellemeq 15574 nninfsellemqall 15575 nninffeq 15580 |
Copyright terms: Public domain | W3C validator |