| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6525 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 4176 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 3754 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2400 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2377 ∅c0 3462 {csn 3635 1oc1o 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4175 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3170 df-un 3172 df-nul 3463 df-sn 3641 df-suc 4423 df-1o 6512 |
| This theorem is referenced by: xp01disj 6529 xp01disjl 6530 rex2dom 6921 djulclb 7169 djuinr 7177 eldju2ndl 7186 djune 7192 updjudhf 7193 updjudhcoinrg 7195 nninfisollemne 7245 nninfisol 7247 exmidomni 7256 fodjum 7260 fodju0 7261 ismkvnex 7269 mkvprop 7272 omniwomnimkv 7281 nninfwlporlemd 7286 nninfwlpoimlemginf 7290 2oneel 7381 1pi 7441 nninfinf 10601 unct 12863 fnpr2o 13221 fnpr2ob 13222 fvpr0o 13223 fvpr1o 13224 fvprif 13225 xpsfrnel 13226 bj-charfunbi 15861 2omap 16047 pwle2 16050 subctctexmid 16052 pw1nct 16055 peano3nninf 16059 nninfalllem1 16060 nninfall 16061 nninfsellemeq 16066 nninfsellemqall 16067 nninffeq 16072 |
| Copyright terms: Public domain | W3C validator |