Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6408 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 4116 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 3702 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 2363 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2340 ∅c0 3414 {csn 3583 1oc1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4115 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-suc 4356 df-1o 6395 |
This theorem is referenced by: xp01disj 6412 xp01disjl 6413 djulclb 7032 djuinr 7040 eldju2ndl 7049 djune 7055 updjudhf 7056 updjudhcoinrg 7058 nninfisollemne 7107 nninfisol 7109 exmidomni 7118 fodjum 7122 fodju0 7123 ismkvnex 7131 mkvprop 7134 omniwomnimkv 7143 nninfwlporlemd 7148 nninfwlpoimlemginf 7152 1pi 7277 unct 12397 bj-charfunbi 13846 pwle2 14031 subctctexmid 14034 pw1nct 14036 peano3nninf 14040 nninfalllem1 14041 nninfall 14042 nninfsellemeq 14047 nninfsellemqall 14048 nninffeq 14053 |
Copyright terms: Public domain | W3C validator |