| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6582 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 4211 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 3786 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2423 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 ∅c0 3491 {csn 3666 1oc1o 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4210 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-suc 4462 df-1o 6568 |
| This theorem is referenced by: xp01disj 6587 xp01disjl 6588 rex2dom 6979 djulclb 7230 djuinr 7238 eldju2ndl 7247 djune 7253 updjudhf 7254 updjudhcoinrg 7256 nninfisollemne 7306 nninfisol 7308 exmidomni 7317 fodjum 7321 fodju0 7322 ismkvnex 7330 mkvprop 7333 omniwomnimkv 7342 nninfwlporlemd 7347 nninfwlpoimlemginf 7351 pr2cv1 7376 2oneel 7450 1pi 7510 nninfinf 10673 unct 13021 fnpr2o 13380 fnpr2ob 13381 fvpr0o 13382 fvpr1o 13383 fvprif 13384 xpsfrnel 13385 bj-charfunbi 16198 3dom 16381 2omap 16388 pwle2 16393 subctctexmid 16395 pw1nct 16398 peano3nninf 16403 nninfalllem1 16404 nninfall 16405 nninfsellemeq 16410 nninfsellemqall 16411 nninffeq 16416 |
| Copyright terms: Public domain | W3C validator |