ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equncom GIF version

Theorem equncom 3308
Description: If a class equals the union of two other classes, then it equals the union of those two classes commuted. (Contributed by Alan Sare, 18-Feb-2012.)
Assertion
Ref Expression
equncom (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

Proof of Theorem equncom
StepHypRef Expression
1 uncom 3307 . 2 (𝐵𝐶) = (𝐶𝐵)
21eqeq2i 2207 1 (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  equncomi  3309
  Copyright terms: Public domain W3C validator