ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncom GIF version

Theorem uncom 3280
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uncom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem uncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orcom 728 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
2 elun 3277 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
31, 2bitr4i 187 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐵𝐴))
43uneqri 3278 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wo 708   = wceq 1353  wcel 2148  cun 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134
This theorem is referenced by:  equncom  3281  uneq2  3284  un12  3294  un23  3295  ssun2  3300  unss2  3307  ssequn2  3309  undir  3386  dif32  3399  undif2ss  3499  uneqdifeqim  3509  prcom  3669  tpass  3689  prprc1  3701  difsnss  3739  exmid1stab  4209  suc0  4412  fvun2  5584  fmptpr  5709  fvsnun2  5715  fsnunfv  5718  omv2  6466  phplem2  6853  undifdc  6923  endjusym  7095  fzsuc2  10079  fseq1p1m1  10094  ennnfonelem1  12408  setsslid  12513
  Copyright terms: Public domain W3C validator