ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncom GIF version

Theorem uncom 3321
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uncom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem uncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orcom 730 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
2 elun 3318 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
31, 2bitr4i 187 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐵𝐴))
43uneqri 3319 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wo 710   = wceq 1373  wcel 2177  cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174
This theorem is referenced by:  equncom  3322  uneq2  3325  un12  3335  un23  3336  ssun2  3341  unss2  3348  ssequn2  3350  undir  3427  dif32  3440  undif2ss  3540  uneqdifeqim  3550  prcom  3713  tpass  3733  prprc1  3745  difsnss  3784  exmid1stab  4259  suc0  4465  fununfun  5325  fvun2  5658  fmptpr  5788  fvsnun2  5794  fsnunfv  5797  omv2  6563  phplem2  6964  undifdc  7035  endjusym  7212  fzsuc2  10216  fseq1p1m1  10231  xnn0nnen  10599  ennnfonelem1  12848  setsslid  12953  lgsquadlem2  15625
  Copyright terms: Public domain W3C validator