| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uncom | GIF version | ||
| Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uncom | ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 730 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
| 2 | elun 3318 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐴) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | bitr4i 187 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐵 ∪ 𝐴)) |
| 4 | 3 | uneqri 3319 | 1 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 |
| This theorem is referenced by: equncom 3322 uneq2 3325 un12 3335 un23 3336 ssun2 3341 unss2 3348 ssequn2 3350 undir 3427 dif32 3440 undif2ss 3540 uneqdifeqim 3550 prcom 3713 tpass 3733 prprc1 3745 difsnss 3784 exmid1stab 4259 suc0 4465 fununfun 5325 fvun2 5658 fmptpr 5788 fvsnun2 5794 fsnunfv 5797 omv2 6563 phplem2 6964 undifdc 7035 endjusym 7212 fzsuc2 10216 fseq1p1m1 10231 xnn0nnen 10599 ennnfonelem1 12848 setsslid 12953 lgsquadlem2 15625 |
| Copyright terms: Public domain | W3C validator |