ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncom GIF version

Theorem uncom 3348
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uncom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem uncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orcom 733 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
2 elun 3345 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
31, 2bitr4i 187 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐵𝐴))
43uneqri 3346 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wo 713   = wceq 1395  wcel 2200  cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201
This theorem is referenced by:  equncom  3349  uneq2  3352  un12  3362  un23  3363  ssun2  3368  unss2  3375  ssequn2  3377  undir  3454  dif32  3467  undif2ss  3567  uneqdifeqim  3577  prcom  3742  tpass  3762  prprc1  3774  difsnss  3813  exmid1stab  4291  suc0  4499  fununfun  5360  fvun2  5694  fmptpr  5824  fvsnun2  5830  fsnunfv  5833  omv2  6601  phplem2  7002  undifdc  7074  endjusym  7251  fzsuc2  10263  fseq1p1m1  10278  xnn0nnen  10646  ennnfonelem1  12964  setsslid  13069  lgsquadlem2  15742
  Copyright terms: Public domain W3C validator