Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uncom | GIF version |
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uncom | ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 723 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
2 | elun 3268 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐴) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitr4i 186 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐵 ∪ 𝐴)) |
4 | 3 | uneqri 3269 | 1 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: equncom 3272 uneq2 3275 un12 3285 un23 3286 ssun2 3291 unss2 3298 ssequn2 3300 undir 3377 dif32 3390 undif2ss 3490 uneqdifeqim 3500 prcom 3659 tpass 3679 prprc1 3691 difsnss 3726 suc0 4396 fvun2 5563 fmptpr 5688 fvsnun2 5694 fsnunfv 5697 omv2 6444 phplem2 6831 undifdc 6901 endjusym 7073 fzsuc2 10035 fseq1p1m1 10050 ennnfonelem1 12362 setsslid 12466 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |