ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncom GIF version

Theorem uncom 3307
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uncom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem uncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orcom 729 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
2 elun 3304 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
31, 2bitr4i 187 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐵𝐴))
43uneqri 3305 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1364  wcel 2167  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  equncom  3308  uneq2  3311  un12  3321  un23  3322  ssun2  3327  unss2  3334  ssequn2  3336  undir  3413  dif32  3426  undif2ss  3526  uneqdifeqim  3536  prcom  3698  tpass  3718  prprc1  3730  difsnss  3768  exmid1stab  4241  suc0  4446  fvun2  5628  fmptpr  5754  fvsnun2  5760  fsnunfv  5763  omv2  6523  phplem2  6914  undifdc  6985  endjusym  7162  fzsuc2  10154  fseq1p1m1  10169  xnn0nnen  10529  ennnfonelem1  12624  setsslid  12729  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator