![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uncom | GIF version |
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uncom | ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 685 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
2 | elun 3156 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐴) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitr4i 186 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐵 ∪ 𝐴)) |
4 | 3 | uneqri 3157 | 1 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 667 = wceq 1296 ∈ wcel 1445 ∪ cun 3011 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 |
This theorem is referenced by: equncom 3160 uneq2 3163 un12 3173 un23 3174 ssun2 3179 unss2 3186 ssequn2 3188 undir 3265 dif32 3278 undif2ss 3377 uneqdifeqim 3387 prcom 3538 tpass 3558 prprc1 3570 difsnss 3605 suc0 4262 fvun2 5406 fmptpr 5528 fvsnun2 5534 fsnunfv 5537 omv2 6266 phplem2 6649 undifdc 6714 fzsuc2 9642 fseq1p1m1 9657 setsslid 11709 |
Copyright terms: Public domain | W3C validator |