Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uncom | GIF version |
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uncom | ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 718 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
2 | elun 3263 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐴) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitr4i 186 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐵 ∪ 𝐴)) |
4 | 3 | uneqri 3264 | 1 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: equncom 3267 uneq2 3270 un12 3280 un23 3281 ssun2 3286 unss2 3293 ssequn2 3295 undir 3372 dif32 3385 undif2ss 3484 uneqdifeqim 3494 prcom 3652 tpass 3672 prprc1 3684 difsnss 3719 suc0 4389 fvun2 5553 fmptpr 5677 fvsnun2 5683 fsnunfv 5686 omv2 6433 phplem2 6819 undifdc 6889 endjusym 7061 fzsuc2 10014 fseq1p1m1 10029 ennnfonelem1 12340 setsslid 12444 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |