![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uncom | GIF version |
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uncom | ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 729 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
2 | elun 3301 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐴) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitr4i 187 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐵 ∪ 𝐴)) |
4 | 3 | uneqri 3302 | 1 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 |
This theorem is referenced by: equncom 3305 uneq2 3308 un12 3318 un23 3319 ssun2 3324 unss2 3331 ssequn2 3333 undir 3410 dif32 3423 undif2ss 3523 uneqdifeqim 3533 prcom 3695 tpass 3715 prprc1 3727 difsnss 3765 exmid1stab 4238 suc0 4443 fvun2 5625 fmptpr 5751 fvsnun2 5757 fsnunfv 5760 omv2 6520 phplem2 6911 undifdc 6982 endjusym 7157 fzsuc2 10148 fseq1p1m1 10163 xnn0nnen 10511 ennnfonelem1 12567 setsslid 12672 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |