ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncom GIF version

Theorem uncom 3159
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uncom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem uncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orcom 685 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
2 elun 3156 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
31, 2bitr4i 186 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐵𝐴))
43uneqri 3157 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wo 667   = wceq 1296  wcel 1445  cun 3011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017
This theorem is referenced by:  equncom  3160  uneq2  3163  un12  3173  un23  3174  ssun2  3179  unss2  3186  ssequn2  3188  undir  3265  dif32  3278  undif2ss  3377  uneqdifeqim  3387  prcom  3538  tpass  3558  prprc1  3570  difsnss  3605  suc0  4262  fvun2  5406  fmptpr  5528  fvsnun2  5534  fsnunfv  5537  omv2  6266  phplem2  6649  undifdc  6714  fzsuc2  9642  fseq1p1m1  9657  setsslid  11709
  Copyright terms: Public domain W3C validator