| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uncom | GIF version | ||
| Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uncom | ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 733 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
| 2 | elun 3345 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐴) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | bitr4i 187 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐵 ∪ 𝐴)) |
| 4 | 3 | uneqri 3346 | 1 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: equncom 3349 uneq2 3352 un12 3362 un23 3363 ssun2 3368 unss2 3375 ssequn2 3377 undir 3454 dif32 3467 undif2ss 3567 uneqdifeqim 3577 prcom 3742 tpass 3762 prprc1 3774 difsnss 3813 exmid1stab 4291 suc0 4499 fununfun 5360 fvun2 5694 fmptpr 5824 fvsnun2 5830 fsnunfv 5833 omv2 6601 phplem2 7002 undifdc 7074 endjusym 7251 fzsuc2 10263 fseq1p1m1 10278 xnn0nnen 10646 ennnfonelem1 12964 setsslid 13069 lgsquadlem2 15742 |
| Copyright terms: Public domain | W3C validator |