| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq2 2206 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtri 2217 rabid2 2674 dfss2 3172 equncom 3308 preq12b 3800 preqsn 3805 opeqpr 4286 orddif 4583 dfrel4v 5121 dfiota2 5220 funopg 5292 fnressn 5748 fressnfv 5749 acexmidlemph 5915 fnovim 6031 tpossym 6334 qsid 6659 mapsncnv 6754 ixpsnf1o 6795 pw1fin 6971 ss1o0el1o 6974 unfiexmid 6979 onntri35 7304 recidpirq 7925 axprecex 7947 negeq0 8280 muleqadd 8695 fihasheq0 10885 cjne0 11073 sqrt00 11205 sqrtmsq2i 11300 cbvsum 11525 fsump1i 11598 mertenslem2 11701 cbvprod 11723 absefib 11936 efieq1re 11937 isnsg4 13342 plyco 14995 lgsdinn0 15289 m1lgs 15326 iswomninnlem 15693 |
| Copyright terms: Public domain | W3C validator |