![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq2 2203 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqtri 2214 rabid2 2671 dfss2 3168 equncom 3304 preq12b 3796 preqsn 3801 opeqpr 4282 orddif 4579 dfrel4v 5117 dfiota2 5216 funopg 5288 fnressn 5744 fressnfv 5745 acexmidlemph 5911 fnovim 6027 tpossym 6329 qsid 6654 mapsncnv 6749 ixpsnf1o 6790 pw1fin 6966 ss1o0el1o 6969 unfiexmid 6974 onntri35 7297 recidpirq 7918 axprecex 7940 negeq0 8273 muleqadd 8687 fihasheq0 10864 cjne0 11052 sqrt00 11184 sqrtmsq2i 11279 cbvsum 11503 fsump1i 11576 mertenslem2 11679 cbvprod 11701 absefib 11914 efieq1re 11915 isnsg4 13282 lgsdinn0 15164 m1lgs 15192 iswomninnlem 15539 |
Copyright terms: Public domain | W3C validator |