| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq2 2216 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqtri 2227 rabid2 2684 ssalel 3185 equncom 3322 preq12b 3819 preqsn 3824 opeqpr 4311 orddif 4608 dfrel4v 5148 dfiota2 5247 funopg 5319 funopsn 5780 fnressn 5788 fressnfv 5789 acexmidlemph 5955 fnovim 6072 tpossym 6380 qsid 6705 mapsncnv 6800 ixpsnf1o 6841 pw1fin 7028 ss1o0el1o 7031 unfiexmid 7036 onntri35 7378 recidpirq 8001 axprecex 8023 negeq0 8356 muleqadd 8771 fihasheq0 10970 cjne0 11304 sqrt00 11436 sqrtmsq2i 11531 cbvsum 11756 fsump1i 11829 mertenslem2 11932 cbvprod 11954 absefib 12167 efieq1re 12168 isnsg4 13633 plyco 15316 lgsdinn0 15610 m1lgs 15647 upgrex 15784 iswomninnlem 16160 |
| Copyright terms: Public domain | W3C validator |