Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq2 2180 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqtri 2191 rabid2 2646 dfss2 3136 equncom 3272 preq12b 3757 preqsn 3762 opeqpr 4238 orddif 4531 dfrel4v 5062 dfiota2 5161 funopg 5232 fnressn 5682 fressnfv 5683 acexmidlemph 5846 fnovim 5961 tpossym 6255 qsid 6578 mapsncnv 6673 ixpsnf1o 6714 pw1fin 6888 ss1o0el1o 6890 unfiexmid 6895 onntri35 7214 recidpirq 7820 axprecex 7842 negeq0 8173 muleqadd 8586 fihasheq0 10728 cjne0 10872 sqrt00 11004 sqrtmsq2i 11099 cbvsum 11323 fsump1i 11396 mertenslem2 11499 cbvprod 11521 absefib 11733 efieq1re 11734 lgsdinn0 13743 iswomninnlem 14081 |
Copyright terms: Public domain | W3C validator |