| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq2 2214 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqtri 2225 rabid2 2682 ssalel 3180 equncom 3317 preq12b 3810 preqsn 3815 opeqpr 4297 orddif 4594 dfrel4v 5133 dfiota2 5232 funopg 5304 funopsn 5761 fnressn 5769 fressnfv 5770 acexmidlemph 5936 fnovim 6053 tpossym 6361 qsid 6686 mapsncnv 6781 ixpsnf1o 6822 pw1fin 7006 ss1o0el1o 7009 unfiexmid 7014 onntri35 7348 recidpirq 7970 axprecex 7992 negeq0 8325 muleqadd 8740 fihasheq0 10936 cjne0 11161 sqrt00 11293 sqrtmsq2i 11388 cbvsum 11613 fsump1i 11686 mertenslem2 11789 cbvprod 11811 absefib 12024 efieq1re 12025 isnsg4 13490 plyco 15173 lgsdinn0 15467 m1lgs 15504 iswomninnlem 15921 |
| Copyright terms: Public domain | W3C validator |