| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq2 2214 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqtri 2225 rabid2 2682 ssalel 3180 equncom 3317 preq12b 3810 preqsn 3815 opeqpr 4297 orddif 4594 dfrel4v 5133 dfiota2 5232 funopg 5304 funopsn 5761 fnressn 5769 fressnfv 5770 acexmidlemph 5936 fnovim 6053 tpossym 6361 qsid 6686 mapsncnv 6781 ixpsnf1o 6822 pw1fin 7006 ss1o0el1o 7009 unfiexmid 7014 onntri35 7348 recidpirq 7970 axprecex 7992 negeq0 8325 muleqadd 8740 fihasheq0 10936 cjne0 11190 sqrt00 11322 sqrtmsq2i 11417 cbvsum 11642 fsump1i 11715 mertenslem2 11818 cbvprod 11840 absefib 12053 efieq1re 12054 isnsg4 13519 plyco 15202 lgsdinn0 15496 m1lgs 15533 iswomninnlem 15950 |
| Copyright terms: Public domain | W3C validator |