| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq2 2239 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqtri 2250 rabid2 2708 ssalel 3212 equncom 3349 preq12b 3847 preqsn 3852 opeqpr 4339 orddif 4638 dfrel4v 5179 dfiota2 5278 funopg 5351 funopsn 5816 fnressn 5824 fressnfv 5825 riotaeqimp 5978 acexmidlemph 5993 fnovim 6112 tpossym 6420 qsid 6745 mapsncnv 6840 ixpsnf1o 6881 pw1fin 7068 ss1o0el1o 7071 unfiexmid 7076 onntri35 7418 recidpirq 8041 axprecex 8063 negeq0 8396 muleqadd 8811 fihasheq0 11010 cjne0 11414 sqrt00 11546 sqrtmsq2i 11641 cbvsum 11866 fsump1i 11939 mertenslem2 12042 cbvprod 12064 absefib 12277 efieq1re 12278 isnsg4 13744 plyco 15427 lgsdinn0 15721 m1lgs 15758 upgrex 15897 uhgr2edg 15998 usgredg2vlem1 16014 usgredg2vlem2 16015 ushgredgedg 16018 ushgredgedgloop 16020 iswomninnlem 16376 |
| Copyright terms: Public domain | W3C validator |