| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq2 2206 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtri 2217 rabid2 2674 ssalel 3172 equncom 3309 preq12b 3801 preqsn 3806 opeqpr 4287 orddif 4584 dfrel4v 5122 dfiota2 5221 funopg 5293 fnressn 5751 fressnfv 5752 acexmidlemph 5918 fnovim 6035 tpossym 6343 qsid 6668 mapsncnv 6763 ixpsnf1o 6804 pw1fin 6980 ss1o0el1o 6983 unfiexmid 6988 onntri35 7322 recidpirq 7944 axprecex 7966 negeq0 8299 muleqadd 8714 fihasheq0 10904 cjne0 11092 sqrt00 11224 sqrtmsq2i 11319 cbvsum 11544 fsump1i 11617 mertenslem2 11720 cbvprod 11742 absefib 11955 efieq1re 11956 isnsg4 13420 plyco 15103 lgsdinn0 15397 m1lgs 15434 iswomninnlem 15806 |
| Copyright terms: Public domain | W3C validator |