Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq2 2175 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqtri 2186 rabid2 2642 dfss2 3131 equncom 3267 preq12b 3750 preqsn 3755 opeqpr 4231 orddif 4524 dfrel4v 5055 dfiota2 5154 funopg 5222 fnressn 5671 fressnfv 5672 acexmidlemph 5835 fnovim 5950 tpossym 6244 qsid 6566 mapsncnv 6661 ixpsnf1o 6702 pw1fin 6876 ss1o0el1o 6878 unfiexmid 6883 onntri35 7193 recidpirq 7799 axprecex 7821 negeq0 8152 muleqadd 8565 fihasheq0 10707 cjne0 10850 sqrt00 10982 sqrtmsq2i 11077 cbvsum 11301 fsump1i 11374 mertenslem2 11477 cbvprod 11499 absefib 11711 efieq1re 11712 lgsdinn0 13599 iswomninnlem 13938 |
Copyright terms: Public domain | W3C validator |