Proof of Theorem 2exsb
| Step | Hyp | Ref
 | Expression | 
| 1 |   | exsb 2027 | 
. . . 4
⊢
(∃𝑦𝜑 ↔ ∃𝑤∀𝑦(𝑦 = 𝑤 → 𝜑)) | 
| 2 | 1 | exbii 1619 | 
. . 3
⊢
(∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑤∀𝑦(𝑦 = 𝑤 → 𝜑)) | 
| 3 |   | excom 1678 | 
. . 3
⊢
(∃𝑥∃𝑤∀𝑦(𝑦 = 𝑤 → 𝜑) ↔ ∃𝑤∃𝑥∀𝑦(𝑦 = 𝑤 → 𝜑)) | 
| 4 | 2, 3 | bitri 184 | 
. 2
⊢
(∃𝑥∃𝑦𝜑 ↔ ∃𝑤∃𝑥∀𝑦(𝑦 = 𝑤 → 𝜑)) | 
| 5 |   | exsb 2027 | 
. . . 4
⊢
(∃𝑥∀𝑦(𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧∀𝑥(𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) | 
| 6 |   | impexp 263 | 
. . . . . . . 8
⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | 
| 7 | 6 | albii 1484 | 
. . . . . . 7
⊢
(∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | 
| 8 |   | 19.21v 1887 | 
. . . . . . 7
⊢
(∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) | 
| 9 | 7, 8 | bitr2i 185 | 
. . . . . 6
⊢ ((𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 10 | 9 | albii 1484 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 11 | 10 | exbii 1619 | 
. . . 4
⊢
(∃𝑧∀𝑥(𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑)) ↔ ∃𝑧∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 12 | 5, 11 | bitri 184 | 
. . 3
⊢
(∃𝑥∀𝑦(𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 13 | 12 | exbii 1619 | 
. 2
⊢
(∃𝑤∃𝑥∀𝑦(𝑦 = 𝑤 → 𝜑) ↔ ∃𝑤∃𝑧∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 14 |   | excom 1678 | 
. 2
⊢
(∃𝑤∃𝑧∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 15 | 4, 13, 14 | 3bitri 206 | 
1
⊢
(∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |