ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exsb GIF version

Theorem 2exsb 1997
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
2exsb (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝑤,𝑧   𝜑,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2exsb
StepHypRef Expression
1 exsb 1996 . . . 4 (∃𝑦𝜑 ↔ ∃𝑤𝑦(𝑦 = 𝑤𝜑))
21exbii 1593 . . 3 (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑤𝑦(𝑦 = 𝑤𝜑))
3 excom 1652 . . 3 (∃𝑥𝑤𝑦(𝑦 = 𝑤𝜑) ↔ ∃𝑤𝑥𝑦(𝑦 = 𝑤𝜑))
42, 3bitri 183 . 2 (∃𝑥𝑦𝜑 ↔ ∃𝑤𝑥𝑦(𝑦 = 𝑤𝜑))
5 exsb 1996 . . . 4 (∃𝑥𝑦(𝑦 = 𝑤𝜑) ↔ ∃𝑧𝑥(𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)))
6 impexp 261 . . . . . . . 8 (((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)))
76albii 1458 . . . . . . 7 (∀𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)))
8 19.21v 1861 . . . . . . 7 (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)))
97, 8bitr2i 184 . . . . . 6 ((𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)) ↔ ∀𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
109albii 1458 . . . . 5 (∀𝑥(𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)) ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
1110exbii 1593 . . . 4 (∃𝑧𝑥(𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)) ↔ ∃𝑧𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
125, 11bitri 183 . . 3 (∃𝑥𝑦(𝑦 = 𝑤𝜑) ↔ ∃𝑧𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
1312exbii 1593 . 2 (∃𝑤𝑥𝑦(𝑦 = 𝑤𝜑) ↔ ∃𝑤𝑧𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
14 excom 1652 . 2 (∃𝑤𝑧𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
154, 13, 143bitri 205 1 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator