ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco4 GIF version

Theorem sbco4 2000
Description: Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
Assertion
Ref Expression
sbco4 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑣,𝑢,𝜑   𝑥,𝑢,𝑣   𝑦,𝑢,𝑣   𝜑,𝑤   𝑥,𝑤   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sbcom2 1980 . . 3 ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2 nfv 1521 . . . . 5 𝑢[𝑣 / 𝑦]𝜑
32sbco2 1958 . . . 4 ([𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
43sbbii 1758 . . 3 ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
51, 4bitr3i 185 . 2 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
6 sbco4lem 1999 . 2 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑)
7 sbco4lem 1999 . 2 ([𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
85, 6, 73bitri 205 1 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator