ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptco GIF version

Theorem fmptco 5745
Description: Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation ( x + 2 ) and 𝐺 the equation ( 3 * z ) then (𝐺𝐹) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1 ((𝜑𝑥𝐴) → 𝑅𝐵)
fmptco.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptco.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptco.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptco (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝑅   𝜑,𝑥   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptco
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5180 . 2 Rel (𝐺𝐹)
2 funmpt 5308 . . 3 Fun (𝑥𝐴𝑇)
3 funrel 5287 . . 3 (Fun (𝑥𝐴𝑇) → Rel (𝑥𝐴𝑇))
42, 3ax-mp 5 . 2 Rel (𝑥𝐴𝑇)
5 fmptco.1 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑅𝐵)
6 eqid 2204 . . . . . . . . . . . . 13 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
75, 6fmptd 5733 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
8 fmptco.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐴𝑅))
98feq1d 5411 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴𝐵 ↔ (𝑥𝐴𝑅):𝐴𝐵))
107, 9mpbird 167 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
11 ffun 5427 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → Fun 𝐹)
1210, 11syl 14 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
13 funbrfv 5616 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧𝐹𝑢 → (𝐹𝑧) = 𝑢))
1413imp 124 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
1512, 14sylan 283 . . . . . . . . 9 ((𝜑𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
1615eqcomd 2210 . . . . . . . 8 ((𝜑𝑧𝐹𝑢) → 𝑢 = (𝐹𝑧))
1716a1d 22 . . . . . . 7 ((𝜑𝑧𝐹𝑢) → (𝑢𝐺𝑤𝑢 = (𝐹𝑧)))
1817expimpd 363 . . . . . 6 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) → 𝑢 = (𝐹𝑧)))
1918pm4.71rd 394 . . . . 5 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
2019exbidv 1847 . . . 4 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
21 exsimpl 1639 . . . . . . 7 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) → ∃𝑢 𝑢 = (𝐹𝑧))
22 isset 2777 . . . . . . 7 ((𝐹𝑧) ∈ V ↔ ∃𝑢 𝑢 = (𝐹𝑧))
2321, 22sylibr 134 . . . . . 6 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) → (𝐹𝑧) ∈ V)
2423a1i 9 . . . . 5 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) → (𝐹𝑧) ∈ V))
2512adantr 276 . . . . . . . 8 ((𝜑𝑧𝐴) → Fun 𝐹)
26 fdm 5430 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2710, 26syl 14 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
2827eleq2d 2274 . . . . . . . . 9 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐴))
2928biimpar 297 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 ∈ dom 𝐹)
30 funfvex 5592 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
3125, 29, 30syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ V)
3231adantrr 479 . . . . . 6 ((𝜑 ∧ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)) → (𝐹𝑧) ∈ V)
3332ex 115 . . . . 5 (𝜑 → ((𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇) → (𝐹𝑧) ∈ V))
34 breq2 4047 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → (𝑧𝐹𝑢𝑧𝐹(𝐹𝑧)))
35 breq1 4046 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → (𝑢𝐺𝑤 ↔ (𝐹𝑧)𝐺𝑤))
3634, 35anbi12d 473 . . . . . . . 8 (𝑢 = (𝐹𝑧) → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
3736ceqsexgv 2901 . . . . . . 7 ((𝐹𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
38 funfvbrb 5692 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
3912, 38syl 14 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
4039, 28bitr3d 190 . . . . . . . . 9 (𝜑 → (𝑧𝐹(𝐹𝑧) ↔ 𝑧𝐴))
418fveq1d 5577 . . . . . . . . . 10 (𝜑 → (𝐹𝑧) = ((𝑥𝐴𝑅)‘𝑧))
42 fmptco.3 . . . . . . . . . 10 (𝜑𝐺 = (𝑦𝐵𝑆))
43 eqidd 2205 . . . . . . . . . 10 (𝜑𝑤 = 𝑤)
4441, 42, 43breq123d 4057 . . . . . . . . 9 (𝜑 → ((𝐹𝑧)𝐺𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
4540, 44anbi12d 473 . . . . . . . 8 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤)))
46 nfcv 2347 . . . . . . . . . . 11 𝑥𝑧
47 nfv 1550 . . . . . . . . . . . 12 𝑥𝜑
48 nffvmpt1 5586 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴𝑅)‘𝑧)
49 nfcv 2347 . . . . . . . . . . . . . 14 𝑥(𝑦𝐵𝑆)
50 nfcv 2347 . . . . . . . . . . . . . 14 𝑥𝑤
5148, 49, 50nfbr 4089 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤
52 nfcsb1v 3125 . . . . . . . . . . . . . 14 𝑥𝑧 / 𝑥𝑇
5352nfeq2 2359 . . . . . . . . . . . . 13 𝑥 𝑤 = 𝑧 / 𝑥𝑇
5451, 53nfbi 1611 . . . . . . . . . . . 12 𝑥(((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)
5547, 54nfim 1594 . . . . . . . . . . 11 𝑥(𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
56 fveq2 5575 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴𝑅)‘𝑥) = ((𝑥𝐴𝑅)‘𝑧))
5756breq1d 4053 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
58 csbeq1a 3101 . . . . . . . . . . . . . 14 (𝑥 = 𝑧𝑇 = 𝑧 / 𝑥𝑇)
5958eqeq2d 2216 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑤 = 𝑇𝑤 = 𝑧 / 𝑥𝑇))
6057, 59bibi12d 235 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇) ↔ (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
6160imbi2d 230 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))))
62 vex 2774 . . . . . . . . . . . . . 14 𝑤 ∈ V
63 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑦 = 𝑅)
6463eleq1d 2273 . . . . . . . . . . . . . . . 16 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑦𝐵𝑅𝐵))
65 simpr 110 . . . . . . . . . . . . . . . . 17 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑢 = 𝑤)
66 fmptco.4 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑅𝑆 = 𝑇)
6766adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑆 = 𝑇)
6865, 67eqeq12d 2219 . . . . . . . . . . . . . . . 16 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑢 = 𝑆𝑤 = 𝑇))
6964, 68anbi12d 473 . . . . . . . . . . . . . . 15 ((𝑦 = 𝑅𝑢 = 𝑤) → ((𝑦𝐵𝑢 = 𝑆) ↔ (𝑅𝐵𝑤 = 𝑇)))
70 df-mpt 4106 . . . . . . . . . . . . . . 15 (𝑦𝐵𝑆) = {⟨𝑦, 𝑢⟩ ∣ (𝑦𝐵𝑢 = 𝑆)}
7169, 70brabga 4309 . . . . . . . . . . . . . 14 ((𝑅𝐵𝑤 ∈ V) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
725, 62, 71sylancl 413 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
73 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝑥𝐴)
746fvmpt2 5662 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅𝐵) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
7573, 5, 74syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
7675breq1d 4053 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑅(𝑦𝐵𝑆)𝑤))
775biantrurd 305 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑤 = 𝑇 ↔ (𝑅𝐵𝑤 = 𝑇)))
7872, 76, 773bitr4d 220 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇))
7978expcom 116 . . . . . . . . . . 11 (𝑥𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)))
8046, 55, 61, 79vtoclgaf 2837 . . . . . . . . . 10 (𝑧𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
8180impcom 125 . . . . . . . . 9 ((𝜑𝑧𝐴) → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
8281pm5.32da 452 . . . . . . . 8 (𝜑 → ((𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8345, 82bitrd 188 . . . . . . 7 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8437, 83sylan9bbr 463 . . . . . 6 ((𝜑 ∧ (𝐹𝑧) ∈ V) → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8584ex 115 . . . . 5 (𝜑 → ((𝐹𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))))
8624, 33, 85pm5.21ndd 706 . . . 4 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8720, 86bitrd 188 . . 3 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
88 vex 2774 . . . 4 𝑧 ∈ V
8988, 62opelco 4849 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤))
90 df-mpt 4106 . . . . 5 (𝑥𝐴𝑇) = {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)}
9190eleq2i 2271 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)})
92 nfv 1550 . . . . . 6 𝑥 𝑧𝐴
9352nfeq2 2359 . . . . . 6 𝑥 𝑣 = 𝑧 / 𝑥𝑇
9492, 93nfan 1587 . . . . 5 𝑥(𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)
95 nfv 1550 . . . . 5 𝑣(𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)
96 eleq1 2267 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
9758eqeq2d 2216 . . . . . 6 (𝑥 = 𝑧 → (𝑣 = 𝑇𝑣 = 𝑧 / 𝑥𝑇))
9896, 97anbi12d 473 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑣 = 𝑇) ↔ (𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)))
99 eqeq1 2211 . . . . . 6 (𝑣 = 𝑤 → (𝑣 = 𝑧 / 𝑥𝑇𝑤 = 𝑧 / 𝑥𝑇))
10099anbi2d 464 . . . . 5 (𝑣 = 𝑤 → ((𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
10194, 95, 88, 62, 98, 100opelopabf 4320 . . . 4 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)} ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
10291, 101bitri 184 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
10387, 89, 1023bitr4g 223 . 2 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇)))
1041, 4, 103eqrelrdv 4770 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771  csb 3092  cop 3635   class class class wbr 4043  {copab 4103  cmpt 4104  dom cdm 4674  ccom 4678  Rel wrel 4679  Fun wfun 5264  wf 5266  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278
This theorem is referenced by:  fmptcof  5746  cofmpt  5748  fcompt  5749  fcoconst  5750  ofco  6176  prdsidlem  13221  pws0g  13225  pwsinvg  13386  pwssub  13387  gsumfzmhm2  13622  psrlinv  14388  lmcn2  14694  cdivcncfap  15018  negfcncf  15020  dvcj  15123  dvfre  15124  dvmptcjx  15138  plyco  15173  plycjlemc  15174
  Copyright terms: Public domain W3C validator