Step | Hyp | Ref
| Expression |
1 | | relco 5109 |
. 2
⊢ Rel
(𝐺 ∘ 𝐹) |
2 | | funmpt 5236 |
. . 3
⊢ Fun
(𝑥 ∈ 𝐴 ↦ 𝑇) |
3 | | funrel 5215 |
. . 3
⊢ (Fun
(𝑥 ∈ 𝐴 ↦ 𝑇) → Rel (𝑥 ∈ 𝐴 ↦ 𝑇)) |
4 | 2, 3 | ax-mp 5 |
. 2
⊢ Rel
(𝑥 ∈ 𝐴 ↦ 𝑇) |
5 | | fmptco.1 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
6 | | eqid 2170 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅) |
7 | 5, 6 | fmptd 5650 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) |
8 | | fmptco.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
9 | 8 | feq1d 5334 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵)) |
10 | 7, 9 | mpbird 166 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
11 | | ffun 5350 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
12 | 10, 11 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐹) |
13 | | funbrfv 5535 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧𝐹𝑢 → (𝐹‘𝑧) = 𝑢)) |
14 | 13 | imp 123 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧𝐹𝑢) → (𝐹‘𝑧) = 𝑢) |
15 | 12, 14 | sylan 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → (𝐹‘𝑧) = 𝑢) |
16 | 15 | eqcomd 2176 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → 𝑢 = (𝐹‘𝑧)) |
17 | 16 | a1d 22 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → (𝑢𝐺𝑤 → 𝑢 = (𝐹‘𝑧))) |
18 | 17 | expimpd 361 |
. . . . . 6
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) → 𝑢 = (𝐹‘𝑧))) |
19 | 18 | pm4.71rd 392 |
. . . . 5
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)))) |
20 | 19 | exbidv 1818 |
. . . 4
⊢ (𝜑 → (∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)))) |
21 | | exsimpl 1610 |
. . . . . . 7
⊢
(∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) → ∃𝑢 𝑢 = (𝐹‘𝑧)) |
22 | | isset 2736 |
. . . . . . 7
⊢ ((𝐹‘𝑧) ∈ V ↔ ∃𝑢 𝑢 = (𝐹‘𝑧)) |
23 | 21, 22 | sylibr 133 |
. . . . . 6
⊢
(∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) → (𝐹‘𝑧) ∈ V) |
24 | 23 | a1i 9 |
. . . . 5
⊢ (𝜑 → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) → (𝐹‘𝑧) ∈ V)) |
25 | 12 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Fun 𝐹) |
26 | | fdm 5353 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
27 | 10, 26 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝐴) |
28 | 27 | eleq2d 2240 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴)) |
29 | 28 | biimpar 295 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ dom 𝐹) |
30 | | funfvex 5513 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ V) |
31 | 25, 29, 30 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ V) |
32 | 31 | adantrr 476 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) → (𝐹‘𝑧) ∈ V) |
33 | 32 | ex 114 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) → (𝐹‘𝑧) ∈ V)) |
34 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑧) → (𝑧𝐹𝑢 ↔ 𝑧𝐹(𝐹‘𝑧))) |
35 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑧) → (𝑢𝐺𝑤 ↔ (𝐹‘𝑧)𝐺𝑤)) |
36 | 34, 35 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑧) → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤))) |
37 | 36 | ceqsexgv 2859 |
. . . . . . 7
⊢ ((𝐹‘𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤))) |
38 | | funfvbrb 5609 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧 ∈ dom 𝐹 ↔ 𝑧𝐹(𝐹‘𝑧))) |
39 | 12, 38 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧𝐹(𝐹‘𝑧))) |
40 | 39, 28 | bitr3d 189 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧𝐹(𝐹‘𝑧) ↔ 𝑧 ∈ 𝐴)) |
41 | 8 | fveq1d 5498 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)) |
42 | | fmptco.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
43 | | eqidd 2171 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑤 = 𝑤) |
44 | 41, 42, 43 | breq123d 4003 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑧)𝐺𝑤 ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
45 | 40, 44 | anbi12d 470 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤))) |
46 | | nfcv 2312 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑧 |
47 | | nfv 1521 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝜑 |
48 | | nffvmpt1 5507 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧) |
49 | | nfcv 2312 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝑦 ∈ 𝐵 ↦ 𝑆) |
50 | | nfcv 2312 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝑤 |
51 | 48, 49, 50 | nfbr 4035 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 |
52 | | nfcsb1v 3082 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑇 |
53 | 52 | nfeq2 2324 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 = ⦋𝑧 / 𝑥⦌𝑇 |
54 | 51, 53 | nfbi 1582 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) |
55 | 47, 54 | nfim 1565 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
56 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)) |
57 | 56 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
58 | | csbeq1a 3058 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → 𝑇 = ⦋𝑧 / 𝑥⦌𝑇) |
59 | 58 | eqeq2d 2182 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑤 = 𝑇 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
60 | 57, 59 | bibi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇) ↔ (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
61 | 60 | imbi2d 229 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)))) |
62 | | vex 2733 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
63 | | simpl 108 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑦 = 𝑅) |
64 | 63 | eleq1d 2239 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → (𝑦 ∈ 𝐵 ↔ 𝑅 ∈ 𝐵)) |
65 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑢 = 𝑤) |
66 | | fmptco.4 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
67 | 66 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑆 = 𝑇) |
68 | 65, 67 | eqeq12d 2185 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → (𝑢 = 𝑆 ↔ 𝑤 = 𝑇)) |
69 | 64, 68 | anbi12d 470 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → ((𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆) ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
70 | | df-mpt 4052 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = {〈𝑦, 𝑢〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆)} |
71 | 69, 70 | brabga 4249 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ 𝐵 ∧ 𝑤 ∈ V) → (𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
72 | 5, 62, 71 | sylancl 411 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
73 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
74 | 6 | fvmpt2 5579 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑅 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) |
75 | 73, 5, 74 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) |
76 | 75 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
77 | 5 | biantrurd 303 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 = 𝑇 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
78 | 72, 76, 77 | 3bitr4d 219 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇)) |
79 | 78 | expcom 115 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇))) |
80 | 46, 55, 61, 79 | vtoclgaf 2795 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 → (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
81 | 80 | impcom 124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
82 | 81 | pm5.32da 449 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
83 | 45, 82 | bitrd 187 |
. . . . . . 7
⊢ (𝜑 → ((𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
84 | 37, 83 | sylan9bbr 460 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ V) → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
85 | 84 | ex 114 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)))) |
86 | 24, 33, 85 | pm5.21ndd 700 |
. . . 4
⊢ (𝜑 → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
87 | 20, 86 | bitrd 187 |
. . 3
⊢ (𝜑 → (∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
88 | | vex 2733 |
. . . 4
⊢ 𝑧 ∈ V |
89 | 88, 62 | opelco 4783 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝐺 ∘ 𝐹) ↔ ∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) |
90 | | df-mpt 4052 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝑇) = {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)} |
91 | 90 | eleq2i 2237 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)}) |
92 | | nfv 1521 |
. . . . . 6
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
93 | 52 | nfeq2 2324 |
. . . . . 6
⊢
Ⅎ𝑥 𝑣 = ⦋𝑧 / 𝑥⦌𝑇 |
94 | 92, 93 | nfan 1558 |
. . . . 5
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇) |
95 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑣(𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) |
96 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
97 | 58 | eqeq2d 2182 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑣 = 𝑇 ↔ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇)) |
98 | 96, 97 | anbi12d 470 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇))) |
99 | | eqeq1 2177 |
. . . . . 6
⊢ (𝑣 = 𝑤 → (𝑣 = ⦋𝑧 / 𝑥⦌𝑇 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
100 | 99 | anbi2d 461 |
. . . . 5
⊢ (𝑣 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
101 | 94, 95, 88, 62, 98, 100 | opelopabf 4259 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
102 | 91, 101 | bitri 183 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
103 | 87, 89, 102 | 3bitr4g 222 |
. 2
⊢ (𝜑 → (〈𝑧, 𝑤〉 ∈ (𝐺 ∘ 𝐹) ↔ 〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇))) |
104 | 1, 4, 103 | eqrelrdv 4707 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |