| Step | Hyp | Ref
| Expression |
| 1 | | relco 5169 |
. 2
⊢ Rel
(𝐺 ∘ 𝐹) |
| 2 | | funmpt 5297 |
. . 3
⊢ Fun
(𝑥 ∈ 𝐴 ↦ 𝑇) |
| 3 | | funrel 5276 |
. . 3
⊢ (Fun
(𝑥 ∈ 𝐴 ↦ 𝑇) → Rel (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 4 | 2, 3 | ax-mp 5 |
. 2
⊢ Rel
(𝑥 ∈ 𝐴 ↦ 𝑇) |
| 5 | | fmptco.1 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
| 6 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅) |
| 7 | 5, 6 | fmptd 5719 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) |
| 8 | | fmptco.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
| 9 | 8 | feq1d 5397 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵)) |
| 10 | 7, 9 | mpbird 167 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 11 | | ffun 5413 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| 12 | 10, 11 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐹) |
| 13 | | funbrfv 5602 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧𝐹𝑢 → (𝐹‘𝑧) = 𝑢)) |
| 14 | 13 | imp 124 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧𝐹𝑢) → (𝐹‘𝑧) = 𝑢) |
| 15 | 12, 14 | sylan 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → (𝐹‘𝑧) = 𝑢) |
| 16 | 15 | eqcomd 2202 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → 𝑢 = (𝐹‘𝑧)) |
| 17 | 16 | a1d 22 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → (𝑢𝐺𝑤 → 𝑢 = (𝐹‘𝑧))) |
| 18 | 17 | expimpd 363 |
. . . . . 6
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) → 𝑢 = (𝐹‘𝑧))) |
| 19 | 18 | pm4.71rd 394 |
. . . . 5
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)))) |
| 20 | 19 | exbidv 1839 |
. . . 4
⊢ (𝜑 → (∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)))) |
| 21 | | exsimpl 1631 |
. . . . . . 7
⊢
(∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) → ∃𝑢 𝑢 = (𝐹‘𝑧)) |
| 22 | | isset 2769 |
. . . . . . 7
⊢ ((𝐹‘𝑧) ∈ V ↔ ∃𝑢 𝑢 = (𝐹‘𝑧)) |
| 23 | 21, 22 | sylibr 134 |
. . . . . 6
⊢
(∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) → (𝐹‘𝑧) ∈ V) |
| 24 | 23 | a1i 9 |
. . . . 5
⊢ (𝜑 → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) → (𝐹‘𝑧) ∈ V)) |
| 25 | 12 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Fun 𝐹) |
| 26 | | fdm 5416 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 27 | 10, 26 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 28 | 27 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴)) |
| 29 | 28 | biimpar 297 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ dom 𝐹) |
| 30 | | funfvex 5578 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ V) |
| 31 | 25, 29, 30 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ V) |
| 32 | 31 | adantrr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) → (𝐹‘𝑧) ∈ V) |
| 33 | 32 | ex 115 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) → (𝐹‘𝑧) ∈ V)) |
| 34 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑧) → (𝑧𝐹𝑢 ↔ 𝑧𝐹(𝐹‘𝑧))) |
| 35 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑧) → (𝑢𝐺𝑤 ↔ (𝐹‘𝑧)𝐺𝑤)) |
| 36 | 34, 35 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑧) → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤))) |
| 37 | 36 | ceqsexgv 2893 |
. . . . . . 7
⊢ ((𝐹‘𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤))) |
| 38 | | funfvbrb 5678 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧 ∈ dom 𝐹 ↔ 𝑧𝐹(𝐹‘𝑧))) |
| 39 | 12, 38 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧𝐹(𝐹‘𝑧))) |
| 40 | 39, 28 | bitr3d 190 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧𝐹(𝐹‘𝑧) ↔ 𝑧 ∈ 𝐴)) |
| 41 | 8 | fveq1d 5563 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)) |
| 42 | | fmptco.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
| 43 | | eqidd 2197 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑤 = 𝑤) |
| 44 | 41, 42, 43 | breq123d 4048 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑧)𝐺𝑤 ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
| 45 | 40, 44 | anbi12d 473 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤))) |
| 46 | | nfcv 2339 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑧 |
| 47 | | nfv 1542 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝜑 |
| 48 | | nffvmpt1 5572 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧) |
| 49 | | nfcv 2339 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝑦 ∈ 𝐵 ↦ 𝑆) |
| 50 | | nfcv 2339 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝑤 |
| 51 | 48, 49, 50 | nfbr 4080 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 |
| 52 | | nfcsb1v 3117 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑇 |
| 53 | 52 | nfeq2 2351 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 = ⦋𝑧 / 𝑥⦌𝑇 |
| 54 | 51, 53 | nfbi 1603 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) |
| 55 | 47, 54 | nfim 1586 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 56 | | fveq2 5561 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)) |
| 57 | 56 | breq1d 4044 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
| 58 | | csbeq1a 3093 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → 𝑇 = ⦋𝑧 / 𝑥⦌𝑇) |
| 59 | 58 | eqeq2d 2208 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑤 = 𝑇 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 60 | 57, 59 | bibi12d 235 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇) ↔ (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 61 | 60 | imbi2d 230 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)))) |
| 62 | | vex 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
| 63 | | simpl 109 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑦 = 𝑅) |
| 64 | 63 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → (𝑦 ∈ 𝐵 ↔ 𝑅 ∈ 𝐵)) |
| 65 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑢 = 𝑤) |
| 66 | | fmptco.4 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
| 67 | 66 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑆 = 𝑇) |
| 68 | 65, 67 | eqeq12d 2211 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → (𝑢 = 𝑆 ↔ 𝑤 = 𝑇)) |
| 69 | 64, 68 | anbi12d 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → ((𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆) ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
| 70 | | df-mpt 4097 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = {〈𝑦, 𝑢〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆)} |
| 71 | 69, 70 | brabga 4299 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ 𝐵 ∧ 𝑤 ∈ V) → (𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
| 72 | 5, 62, 71 | sylancl 413 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
| 73 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 74 | 6 | fvmpt2 5648 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑅 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) |
| 75 | 73, 5, 74 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) |
| 76 | 75 | breq1d 4044 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
| 77 | 5 | biantrurd 305 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 = 𝑇 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
| 78 | 72, 76, 77 | 3bitr4d 220 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇)) |
| 79 | 78 | expcom 116 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇))) |
| 80 | 46, 55, 61, 79 | vtoclgaf 2829 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 → (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 81 | 80 | impcom 125 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 82 | 81 | pm5.32da 452 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 83 | 45, 82 | bitrd 188 |
. . . . . . 7
⊢ (𝜑 → ((𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 84 | 37, 83 | sylan9bbr 463 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ V) → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 85 | 84 | ex 115 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)))) |
| 86 | 24, 33, 85 | pm5.21ndd 706 |
. . . 4
⊢ (𝜑 → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 87 | 20, 86 | bitrd 188 |
. . 3
⊢ (𝜑 → (∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 88 | | vex 2766 |
. . . 4
⊢ 𝑧 ∈ V |
| 89 | 88, 62 | opelco 4839 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝐺 ∘ 𝐹) ↔ ∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) |
| 90 | | df-mpt 4097 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝑇) = {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)} |
| 91 | 90 | eleq2i 2263 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)}) |
| 92 | | nfv 1542 |
. . . . . 6
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 93 | 52 | nfeq2 2351 |
. . . . . 6
⊢
Ⅎ𝑥 𝑣 = ⦋𝑧 / 𝑥⦌𝑇 |
| 94 | 92, 93 | nfan 1579 |
. . . . 5
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇) |
| 95 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑣(𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) |
| 96 | | eleq1 2259 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 97 | 58 | eqeq2d 2208 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑣 = 𝑇 ↔ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 98 | 96, 97 | anbi12d 473 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 99 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑣 = 𝑤 → (𝑣 = ⦋𝑧 / 𝑥⦌𝑇 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 100 | 99 | anbi2d 464 |
. . . . 5
⊢ (𝑣 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
| 101 | 94, 95, 88, 62, 98, 100 | opelopabf 4310 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 102 | 91, 101 | bitri 184 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
| 103 | 87, 89, 102 | 3bitr4g 223 |
. 2
⊢ (𝜑 → (〈𝑧, 𝑤〉 ∈ (𝐺 ∘ 𝐹) ↔ 〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇))) |
| 104 | 1, 4, 103 | eqrelrdv 4760 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |