ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptco GIF version

Theorem fmptco 5731
Description: Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation ( x + 2 ) and 𝐺 the equation ( 3 * z ) then (𝐺𝐹) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1 ((𝜑𝑥𝐴) → 𝑅𝐵)
fmptco.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptco.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptco.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptco (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝑅   𝜑,𝑥   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptco
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5169 . 2 Rel (𝐺𝐹)
2 funmpt 5297 . . 3 Fun (𝑥𝐴𝑇)
3 funrel 5276 . . 3 (Fun (𝑥𝐴𝑇) → Rel (𝑥𝐴𝑇))
42, 3ax-mp 5 . 2 Rel (𝑥𝐴𝑇)
5 fmptco.1 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑅𝐵)
6 eqid 2196 . . . . . . . . . . . . 13 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
75, 6fmptd 5719 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
8 fmptco.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐴𝑅))
98feq1d 5397 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴𝐵 ↔ (𝑥𝐴𝑅):𝐴𝐵))
107, 9mpbird 167 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
11 ffun 5413 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → Fun 𝐹)
1210, 11syl 14 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
13 funbrfv 5602 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧𝐹𝑢 → (𝐹𝑧) = 𝑢))
1413imp 124 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
1512, 14sylan 283 . . . . . . . . 9 ((𝜑𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
1615eqcomd 2202 . . . . . . . 8 ((𝜑𝑧𝐹𝑢) → 𝑢 = (𝐹𝑧))
1716a1d 22 . . . . . . 7 ((𝜑𝑧𝐹𝑢) → (𝑢𝐺𝑤𝑢 = (𝐹𝑧)))
1817expimpd 363 . . . . . 6 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) → 𝑢 = (𝐹𝑧)))
1918pm4.71rd 394 . . . . 5 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
2019exbidv 1839 . . . 4 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
21 exsimpl 1631 . . . . . . 7 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) → ∃𝑢 𝑢 = (𝐹𝑧))
22 isset 2769 . . . . . . 7 ((𝐹𝑧) ∈ V ↔ ∃𝑢 𝑢 = (𝐹𝑧))
2321, 22sylibr 134 . . . . . 6 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) → (𝐹𝑧) ∈ V)
2423a1i 9 . . . . 5 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) → (𝐹𝑧) ∈ V))
2512adantr 276 . . . . . . . 8 ((𝜑𝑧𝐴) → Fun 𝐹)
26 fdm 5416 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2710, 26syl 14 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
2827eleq2d 2266 . . . . . . . . 9 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐴))
2928biimpar 297 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 ∈ dom 𝐹)
30 funfvex 5578 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
3125, 29, 30syl2anc 411 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ V)
3231adantrr 479 . . . . . 6 ((𝜑 ∧ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)) → (𝐹𝑧) ∈ V)
3332ex 115 . . . . 5 (𝜑 → ((𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇) → (𝐹𝑧) ∈ V))
34 breq2 4038 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → (𝑧𝐹𝑢𝑧𝐹(𝐹𝑧)))
35 breq1 4037 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → (𝑢𝐺𝑤 ↔ (𝐹𝑧)𝐺𝑤))
3634, 35anbi12d 473 . . . . . . . 8 (𝑢 = (𝐹𝑧) → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
3736ceqsexgv 2893 . . . . . . 7 ((𝐹𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
38 funfvbrb 5678 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
3912, 38syl 14 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
4039, 28bitr3d 190 . . . . . . . . 9 (𝜑 → (𝑧𝐹(𝐹𝑧) ↔ 𝑧𝐴))
418fveq1d 5563 . . . . . . . . . 10 (𝜑 → (𝐹𝑧) = ((𝑥𝐴𝑅)‘𝑧))
42 fmptco.3 . . . . . . . . . 10 (𝜑𝐺 = (𝑦𝐵𝑆))
43 eqidd 2197 . . . . . . . . . 10 (𝜑𝑤 = 𝑤)
4441, 42, 43breq123d 4048 . . . . . . . . 9 (𝜑 → ((𝐹𝑧)𝐺𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
4540, 44anbi12d 473 . . . . . . . 8 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤)))
46 nfcv 2339 . . . . . . . . . . 11 𝑥𝑧
47 nfv 1542 . . . . . . . . . . . 12 𝑥𝜑
48 nffvmpt1 5572 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴𝑅)‘𝑧)
49 nfcv 2339 . . . . . . . . . . . . . 14 𝑥(𝑦𝐵𝑆)
50 nfcv 2339 . . . . . . . . . . . . . 14 𝑥𝑤
5148, 49, 50nfbr 4080 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤
52 nfcsb1v 3117 . . . . . . . . . . . . . 14 𝑥𝑧 / 𝑥𝑇
5352nfeq2 2351 . . . . . . . . . . . . 13 𝑥 𝑤 = 𝑧 / 𝑥𝑇
5451, 53nfbi 1603 . . . . . . . . . . . 12 𝑥(((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)
5547, 54nfim 1586 . . . . . . . . . . 11 𝑥(𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
56 fveq2 5561 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴𝑅)‘𝑥) = ((𝑥𝐴𝑅)‘𝑧))
5756breq1d 4044 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
58 csbeq1a 3093 . . . . . . . . . . . . . 14 (𝑥 = 𝑧𝑇 = 𝑧 / 𝑥𝑇)
5958eqeq2d 2208 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑤 = 𝑇𝑤 = 𝑧 / 𝑥𝑇))
6057, 59bibi12d 235 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇) ↔ (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
6160imbi2d 230 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))))
62 vex 2766 . . . . . . . . . . . . . 14 𝑤 ∈ V
63 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑦 = 𝑅)
6463eleq1d 2265 . . . . . . . . . . . . . . . 16 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑦𝐵𝑅𝐵))
65 simpr 110 . . . . . . . . . . . . . . . . 17 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑢 = 𝑤)
66 fmptco.4 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑅𝑆 = 𝑇)
6766adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑆 = 𝑇)
6865, 67eqeq12d 2211 . . . . . . . . . . . . . . . 16 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑢 = 𝑆𝑤 = 𝑇))
6964, 68anbi12d 473 . . . . . . . . . . . . . . 15 ((𝑦 = 𝑅𝑢 = 𝑤) → ((𝑦𝐵𝑢 = 𝑆) ↔ (𝑅𝐵𝑤 = 𝑇)))
70 df-mpt 4097 . . . . . . . . . . . . . . 15 (𝑦𝐵𝑆) = {⟨𝑦, 𝑢⟩ ∣ (𝑦𝐵𝑢 = 𝑆)}
7169, 70brabga 4299 . . . . . . . . . . . . . 14 ((𝑅𝐵𝑤 ∈ V) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
725, 62, 71sylancl 413 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
73 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝑥𝐴)
746fvmpt2 5648 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅𝐵) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
7573, 5, 74syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
7675breq1d 4044 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑅(𝑦𝐵𝑆)𝑤))
775biantrurd 305 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑤 = 𝑇 ↔ (𝑅𝐵𝑤 = 𝑇)))
7872, 76, 773bitr4d 220 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇))
7978expcom 116 . . . . . . . . . . 11 (𝑥𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)))
8046, 55, 61, 79vtoclgaf 2829 . . . . . . . . . 10 (𝑧𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
8180impcom 125 . . . . . . . . 9 ((𝜑𝑧𝐴) → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
8281pm5.32da 452 . . . . . . . 8 (𝜑 → ((𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8345, 82bitrd 188 . . . . . . 7 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8437, 83sylan9bbr 463 . . . . . 6 ((𝜑 ∧ (𝐹𝑧) ∈ V) → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8584ex 115 . . . . 5 (𝜑 → ((𝐹𝑧) ∈ V → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))))
8624, 33, 85pm5.21ndd 706 . . . 4 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8720, 86bitrd 188 . . 3 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
88 vex 2766 . . . 4 𝑧 ∈ V
8988, 62opelco 4839 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤))
90 df-mpt 4097 . . . . 5 (𝑥𝐴𝑇) = {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)}
9190eleq2i 2263 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)})
92 nfv 1542 . . . . . 6 𝑥 𝑧𝐴
9352nfeq2 2351 . . . . . 6 𝑥 𝑣 = 𝑧 / 𝑥𝑇
9492, 93nfan 1579 . . . . 5 𝑥(𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)
95 nfv 1542 . . . . 5 𝑣(𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)
96 eleq1 2259 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
9758eqeq2d 2208 . . . . . 6 (𝑥 = 𝑧 → (𝑣 = 𝑇𝑣 = 𝑧 / 𝑥𝑇))
9896, 97anbi12d 473 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑣 = 𝑇) ↔ (𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)))
99 eqeq1 2203 . . . . . 6 (𝑣 = 𝑤 → (𝑣 = 𝑧 / 𝑥𝑇𝑤 = 𝑧 / 𝑥𝑇))
10099anbi2d 464 . . . . 5 (𝑣 = 𝑤 → ((𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
10194, 95, 88, 62, 98, 100opelopabf 4310 . . . 4 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)} ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
10291, 101bitri 184 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
10387, 89, 1023bitr4g 223 . 2 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇)))
1041, 4, 103eqrelrdv 4760 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  csb 3084  cop 3626   class class class wbr 4034  {copab 4094  cmpt 4095  dom cdm 4664  ccom 4668  Rel wrel 4669  Fun wfun 5253  wf 5255  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267
This theorem is referenced by:  fmptcof  5732  cofmpt  5734  fcompt  5735  fcoconst  5736  ofco  6158  prdsidlem  13149  pws0g  13153  pwsinvg  13314  pwssub  13315  gsumfzmhm2  13550  psrlinv  14312  lmcn2  14600  cdivcncfap  14924  negfcncf  14926  dvcj  15029  dvfre  15030  dvmptcjx  15044  plyco  15079  plycjlemc  15080
  Copyright terms: Public domain W3C validator