Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbc5 | GIF version |
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
sbc5 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2959 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | exsimpl 1605 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 = 𝐴) | |
3 | isset 2732 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 2, 3 | sylibr 133 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝐴 ∈ V) |
5 | dfsbcq2 2954 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
6 | eqeq2 2175 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
7 | 6 | anbi1d 461 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
8 | 7 | exbidv 1813 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
9 | sb5 1875 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
10 | 5, 8, 9 | vtoclbg 2787 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
11 | 1, 4, 10 | pm5.21nii 694 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 [wsb 1750 ∈ wcel 2136 Vcvv 2726 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbc6g 2975 sbc7 2977 sbciegft 2981 sbccomlem 3025 csb2 3047 rexsns 3615 |
Copyright terms: Public domain | W3C validator |