| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcoss | GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1522 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
| 2 | exsimpl 1643 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 3 | vex 2782 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 2782 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelco 4871 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | breq2 4066 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 7 | 6 | cbvexv 1945 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 8 | 2, 5, 7 | 3imtr4i 201 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 9 | 1, 8 | exlimi 1620 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 10 | 3 | eldm2 4898 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 11 | 3 | eldm 4897 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 12 | 9, 10, 11 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 13 | 12 | ssriv 3208 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1518 ∈ wcel 2180 ⊆ wss 3177 〈cop 3649 class class class wbr 4062 dom cdm 4696 ∘ ccom 4700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-co 4705 df-dm 4706 |
| This theorem is referenced by: rncoss 4971 dmcosseq 4972 cossxp 5227 funco 5334 cofunexg 6224 casefun 7220 djufun 7239 ctssdccl 7246 znleval 14582 |
| Copyright terms: Public domain | W3C validator |