| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcoss | GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1520 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
| 2 | exsimpl 1641 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 3 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 2776 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelco 4854 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | breq2 4051 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 7 | 6 | cbvexv 1943 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 8 | 2, 5, 7 | 3imtr4i 201 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 9 | 1, 8 | exlimi 1618 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 10 | 3 | eldm2 4881 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 11 | 3 | eldm 4880 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 12 | 9, 10, 11 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 13 | 12 | ssriv 3198 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3167 〈cop 3637 class class class wbr 4047 dom cdm 4679 ∘ ccom 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-co 4688 df-dm 4689 |
| This theorem is referenced by: rncoss 4954 dmcosseq 4955 cossxp 5210 funco 5316 cofunexg 6201 casefun 7194 djufun 7213 ctssdccl 7220 znleval 14459 |
| Copyright terms: Public domain | W3C validator |