ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabvv GIF version

Theorem brabvv 5810
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
brabvv (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem brabvv
StepHypRef Expression
1 df-br 3925 . . . . . 6 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 4175 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
31, 2bitri 183 . . . . 5 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 exsimpl 1596 . . . . . 6 (∃𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩)
54eximi 1579 . . . . 5 (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩)
63, 5sylbi 120 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → ∃𝑥𝑦𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩)
7 vex 2684 . . . . . . . 8 𝑥 ∈ V
8 vex 2684 . . . . . . . 8 𝑦 ∈ V
97, 8opth 4154 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
109biimpi 119 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩ → (𝑥 = 𝑋𝑦 = 𝑌))
1110eqcoms 2140 . . . . 5 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ → (𝑥 = 𝑋𝑦 = 𝑌))
12112eximi 1580 . . . 4 (∃𝑥𝑦𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦(𝑥 = 𝑋𝑦 = 𝑌))
136, 12syl 14 . . 3 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → ∃𝑥𝑦(𝑥 = 𝑋𝑦 = 𝑌))
14 eeanv 1902 . . 3 (∃𝑥𝑦(𝑥 = 𝑋𝑦 = 𝑌) ↔ (∃𝑥 𝑥 = 𝑋 ∧ ∃𝑦 𝑦 = 𝑌))
1513, 14sylib 121 . 2 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (∃𝑥 𝑥 = 𝑋 ∧ ∃𝑦 𝑦 = 𝑌))
16 isset 2687 . . 3 (𝑋 ∈ V ↔ ∃𝑥 𝑥 = 𝑋)
17 isset 2687 . . 3 (𝑌 ∈ V ↔ ∃𝑦 𝑦 = 𝑌)
1816, 17anbi12i 455 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ (∃𝑥 𝑥 = 𝑋 ∧ ∃𝑦 𝑦 = 𝑌))
1915, 18sylibr 133 1 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  Vcvv 2681  cop 3525   class class class wbr 3924  {copab 3983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator