![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brabvv | GIF version |
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.) |
Ref | Expression |
---|---|
brabvv | ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4005 | . . . . . 6 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
2 | elopab 4259 | . . . . . 6 ⊢ (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
3 | 1, 2 | bitri 184 | . . . . 5 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ∃𝑥∃𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
4 | exsimpl 1617 | . . . . . 6 ⊢ (∃𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩) | |
5 | 4 | eximi 1600 | . . . . 5 ⊢ (∃𝑥∃𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥∃𝑦⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩) |
6 | 3, 5 | sylbi 121 | . . . 4 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → ∃𝑥∃𝑦⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩) |
7 | vex 2741 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | vex 2741 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opth 4238 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩ ↔ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
10 | 9 | biimpi 120 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩ → (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
11 | 10 | eqcoms 2180 | . . . . 5 ⊢ (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ → (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
12 | 11 | 2eximi 1601 | . . . 4 ⊢ (∃𝑥∃𝑦⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ → ∃𝑥∃𝑦(𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
13 | 6, 12 | syl 14 | . . 3 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → ∃𝑥∃𝑦(𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) |
14 | eeanv 1932 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ↔ (∃𝑥 𝑥 = 𝑋 ∧ ∃𝑦 𝑦 = 𝑌)) | |
15 | 13, 14 | sylib 122 | . 2 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (∃𝑥 𝑥 = 𝑋 ∧ ∃𝑦 𝑦 = 𝑌)) |
16 | isset 2744 | . . 3 ⊢ (𝑋 ∈ V ↔ ∃𝑥 𝑥 = 𝑋) | |
17 | isset 2744 | . . 3 ⊢ (𝑌 ∈ V ↔ ∃𝑦 𝑦 = 𝑌) | |
18 | 16, 17 | anbi12i 460 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ (∃𝑥 𝑥 = 𝑋 ∧ ∃𝑦 𝑦 = 𝑌)) |
19 | 15, 18 | sylibr 134 | 1 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2738 ⟨cop 3596 class class class wbr 4004 {copab 4064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |