| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmd | GIF version | ||
| Description: Deduction form of fdm 5479. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fdm 5479 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4719 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 df-f 5322 |
| This theorem is referenced by: fssdmd 5487 fssdm 5488 ctssdccl 7286 wrddm 11087 swrdclg 11190 cats1un 11261 s2dmg 11330 1arith 12898 ennnfonelemg 12982 ennnfonelemrnh 12995 ennnfonelemf1 12997 ctinfomlemom 13006 ctinf 13009 igsumval 13431 ghmrn 13802 psrbaglesuppg 14644 psrbagfi 14645 lmbrf 14897 cnntri 14906 cncnp 14912 lmtopcnp 14932 txcnp 14953 hmeores 14997 xmetdmdm 15038 metn0 15060 ellimc3apf 15342 limccnpcntop 15357 dvfvalap 15363 dvcjbr 15390 dvcj 15391 dvfre 15392 dvexp 15393 plyaddlem1 15429 plymullem1 15430 plycoeid3 15439 wrdupgren 15904 wrdumgren 15914 |
| Copyright terms: Public domain | W3C validator |