ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmd GIF version

Theorem fdmd 5388
Description: Deduction form of fdm 5387. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fdmd (𝜑 → dom 𝐹 = 𝐴)

Proof of Theorem fdmd
StepHypRef Expression
1 fdmd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 fdm 5387 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4641  wf 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5235  df-f 5236
This theorem is referenced by:  fssdmd  5395  fssdm  5396  ctssdccl  7130  1arith  12385  ennnfonelemg  12429  ennnfonelemrnh  12442  ennnfonelemf1  12444  ctinfomlemom  12453  ctinf  12456  ghmrn  13164  lmbrf  14127  cnntri  14136  cncnp  14142  lmtopcnp  14162  txcnp  14183  hmeores  14227  xmetdmdm  14268  metn0  14290  ellimc3apf  14541  limccnpcntop  14556  dvfvalap  14562  dvcjbr  14584  dvcj  14585  dvfre  14586  dvexp  14587
  Copyright terms: Public domain W3C validator