| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmd | GIF version | ||
| Description: Deduction form of fdm 5437. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fdm 5437 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4679 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5279 df-f 5280 |
| This theorem is referenced by: fssdmd 5445 fssdm 5446 ctssdccl 7220 wrddm 11009 swrdclg 11111 1arith 12734 ennnfonelemg 12818 ennnfonelemrnh 12831 ennnfonelemf1 12833 ctinfomlemom 12842 ctinf 12845 igsumval 13266 ghmrn 13637 psrbaglesuppg 14478 psrbagfi 14479 lmbrf 14731 cnntri 14740 cncnp 14746 lmtopcnp 14766 txcnp 14787 hmeores 14831 xmetdmdm 14872 metn0 14894 ellimc3apf 15176 limccnpcntop 15191 dvfvalap 15197 dvcjbr 15224 dvcj 15225 dvfre 15226 dvexp 15227 plyaddlem1 15263 plymullem1 15264 plycoeid3 15273 |
| Copyright terms: Public domain | W3C validator |