ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmd GIF version

Theorem fdmd 5417
Description: Deduction form of fdm 5416. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fdmd (𝜑 → dom 𝐹 = 𝐴)

Proof of Theorem fdmd
StepHypRef Expression
1 fdmd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 fdm 5416 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4664  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5262  df-f 5263
This theorem is referenced by:  fssdmd  5424  fssdm  5425  ctssdccl  7186  wrddm  10960  1arith  12561  ennnfonelemg  12645  ennnfonelemrnh  12658  ennnfonelemf1  12660  ctinfomlemom  12669  ctinf  12672  igsumval  13092  ghmrn  13463  psrbaglesuppg  14302  lmbrf  14535  cnntri  14544  cncnp  14550  lmtopcnp  14570  txcnp  14591  hmeores  14635  xmetdmdm  14676  metn0  14698  ellimc3apf  14980  limccnpcntop  14995  dvfvalap  15001  dvcjbr  15028  dvcj  15029  dvfre  15030  dvexp  15031  plyaddlem1  15067  plymullem1  15068  plycoeid3  15077
  Copyright terms: Public domain W3C validator