Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fdmd | GIF version |
Description: Deduction form of fdm 5343. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fdm 5343 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 dom cdm 4604 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5191 df-f 5192 |
This theorem is referenced by: fssdmd 5351 fssdm 5352 ctssdccl 7076 1arith 12297 ennnfonelemg 12336 ennnfonelemrnh 12349 ennnfonelemf1 12351 ctinfomlemom 12360 ctinf 12363 lmbrf 12855 cnntri 12864 cncnp 12870 lmtopcnp 12890 txcnp 12911 hmeores 12955 xmetdmdm 12996 metn0 13018 ellimc3apf 13269 limccnpcntop 13284 dvfvalap 13290 dvcjbr 13312 dvcj 13313 dvfre 13314 dvexp 13315 |
Copyright terms: Public domain | W3C validator |