| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmd | GIF version | ||
| Description: Deduction form of fdm 5455. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fdm 5455 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 dom cdm 4696 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5297 df-f 5298 |
| This theorem is referenced by: fssdmd 5463 fssdm 5464 ctssdccl 7246 wrddm 11046 swrdclg 11148 cats1un 11219 s2dmg 11288 1arith 12856 ennnfonelemg 12940 ennnfonelemrnh 12953 ennnfonelemf1 12955 ctinfomlemom 12964 ctinf 12967 igsumval 13389 ghmrn 13760 psrbaglesuppg 14601 psrbagfi 14602 lmbrf 14854 cnntri 14863 cncnp 14869 lmtopcnp 14889 txcnp 14910 hmeores 14954 xmetdmdm 14995 metn0 15017 ellimc3apf 15299 limccnpcntop 15314 dvfvalap 15320 dvcjbr 15347 dvcj 15348 dvfre 15349 dvexp 15350 plyaddlem1 15386 plymullem1 15387 plycoeid3 15396 wrdupgren 15861 wrdumgren 15871 |
| Copyright terms: Public domain | W3C validator |