| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmd | GIF version | ||
| Description: Deduction form of fdm 5416. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fdm 5416 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: fssdmd 5424 fssdm 5425 ctssdccl 7186 wrddm 10962 1arith 12563 ennnfonelemg 12647 ennnfonelemrnh 12660 ennnfonelemf1 12662 ctinfomlemom 12671 ctinf 12674 igsumval 13094 ghmrn 13465 psrbaglesuppg 14304 lmbrf 14537 cnntri 14546 cncnp 14552 lmtopcnp 14572 txcnp 14593 hmeores 14637 xmetdmdm 14678 metn0 14700 ellimc3apf 14982 limccnpcntop 14997 dvfvalap 15003 dvcjbr 15030 dvcj 15031 dvfre 15032 dvexp 15033 plyaddlem1 15069 plymullem1 15070 plycoeid3 15079 |
| Copyright terms: Public domain | W3C validator |