![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fdmd | GIF version |
Description: Deduction form of fdm 5409. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fdm 5409 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4659 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5257 df-f 5258 |
This theorem is referenced by: fssdmd 5417 fssdm 5418 ctssdccl 7170 wrddm 10922 1arith 12505 ennnfonelemg 12560 ennnfonelemrnh 12573 ennnfonelemf1 12575 ctinfomlemom 12584 ctinf 12587 igsumval 12973 ghmrn 13327 psrbaglesuppg 14158 lmbrf 14383 cnntri 14392 cncnp 14398 lmtopcnp 14418 txcnp 14439 hmeores 14483 xmetdmdm 14524 metn0 14546 ellimc3apf 14814 limccnpcntop 14829 dvfvalap 14835 dvcjbr 14857 dvcj 14858 dvfre 14859 dvexp 14860 plyaddlem1 14893 plymullem1 14894 |
Copyright terms: Public domain | W3C validator |