| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmd | GIF version | ||
| Description: Deduction form of fdm 5413. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fdm 5413 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4663 ⟶wf 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5261 df-f 5262 |
| This theorem is referenced by: fssdmd 5421 fssdm 5422 ctssdccl 7177 wrddm 10943 1arith 12536 ennnfonelemg 12620 ennnfonelemrnh 12633 ennnfonelemf1 12635 ctinfomlemom 12644 ctinf 12647 igsumval 13033 ghmrn 13387 psrbaglesuppg 14226 lmbrf 14451 cnntri 14460 cncnp 14466 lmtopcnp 14486 txcnp 14507 hmeores 14551 xmetdmdm 14592 metn0 14614 ellimc3apf 14896 limccnpcntop 14911 dvfvalap 14917 dvcjbr 14944 dvcj 14945 dvfre 14946 dvexp 14947 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 |
| Copyright terms: Public domain | W3C validator |