ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmd GIF version

Theorem fdmd 5373
Description: Deduction form of fdm 5372. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fdmd (𝜑 → dom 𝐹 = 𝐴)

Proof of Theorem fdmd
StepHypRef Expression
1 fdmd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 fdm 5372 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  dom cdm 4627  wf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5220  df-f 5221
This theorem is referenced by:  fssdmd  5380  fssdm  5381  ctssdccl  7110  1arith  12365  ennnfonelemg  12404  ennnfonelemrnh  12417  ennnfonelemf1  12419  ctinfomlemom  12428  ctinf  12431  lmbrf  13718  cnntri  13727  cncnp  13733  lmtopcnp  13753  txcnp  13774  hmeores  13818  xmetdmdm  13859  metn0  13881  ellimc3apf  14132  limccnpcntop  14147  dvfvalap  14153  dvcjbr  14175  dvcj  14176  dvfre  14177  dvexp  14178
  Copyright terms: Public domain W3C validator