ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemdisj GIF version

Theorem suplocexprlemdisj 7682
Description: Lemma for suplocexpr 7687. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemdisj (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑢   𝑥,𝐴,𝑦   𝑤,𝐵   𝜑,𝑞,𝑤   𝜑,𝑥,𝑦   𝑢,𝑞
Allowed substitution hints:   𝜑(𝑧,𝑢)   𝐴(𝑧,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑞)

Proof of Theorem suplocexprlemdisj
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 526 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → 𝑞 (1st𝐴))
2 suplocexprlemell 7675 . . . . 5 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
31, 2sylib 121 . . . 4 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 simprr 527 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
5 simplrr 531 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝐵))
6 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
7 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
8 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
96, 7, 8suplocexprlemss 7677 . . . . . . . . . . . 12 (𝜑𝐴P)
109ad3antrrr 489 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
11 suplocexpr.b . . . . . . . . . . . . 13 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1211suplocexprlem2b 7676 . . . . . . . . . . . 12 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1312eleq2d 2240 . . . . . . . . . . 11 (𝐴P → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1410, 13syl 14 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
15 breq2 3993 . . . . . . . . . . . 12 (𝑢 = 𝑞 → (𝑤 <Q 𝑢𝑤 <Q 𝑞))
1615rexbidv 2471 . . . . . . . . . . 11 (𝑢 = 𝑞 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1716elrab 2886 . . . . . . . . . 10 (𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1814, 17bitrdi 195 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)))
195, 18mpbid 146 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
2019simprd 113 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
21 simprr 527 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 <Q 𝑞)
2210adantr 274 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝐴P)
23 simplrl 530 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠𝐴)
2422, 23sseldd 3148 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠P)
25 prop 7437 . . . . . . . . . 10 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
2624, 25syl 14 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
27 eleq2 2234 . . . . . . . . . 10 (𝑡 = (2nd𝑠) → (𝑤𝑡𝑤 ∈ (2nd𝑠)))
28 simprl 526 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 (2nd𝐴))
29 vex 2733 . . . . . . . . . . . 12 𝑤 ∈ V
3029elint2 3838 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3128, 30sylib 121 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
32 fo2nd 6137 . . . . . . . . . . . . . 14 2nd :V–onto→V
33 fofun 5421 . . . . . . . . . . . . . 14 (2nd :V–onto→V → Fun 2nd )
3432, 33ax-mp 5 . . . . . . . . . . . . 13 Fun 2nd
35 vex 2733 . . . . . . . . . . . . . 14 𝑠 ∈ V
36 fof 5420 . . . . . . . . . . . . . . . 16 (2nd :V–onto→V → 2nd :V⟶V)
3732, 36ax-mp 5 . . . . . . . . . . . . . . 15 2nd :V⟶V
3837fdmi 5355 . . . . . . . . . . . . . 14 dom 2nd = V
3935, 38eleqtrri 2246 . . . . . . . . . . . . 13 𝑠 ∈ dom 2nd
40 funfvima 5727 . . . . . . . . . . . . 13 ((Fun 2nd𝑠 ∈ dom 2nd ) → (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴)))
4134, 39, 40mp2an 424 . . . . . . . . . . . 12 (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴))
4241ad2antrl 487 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (2nd𝑠) ∈ (2nd𝐴))
4342adantr 274 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (2nd𝑠) ∈ (2nd𝐴))
4427, 31, 43rspcdva 2839 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 ∈ (2nd𝑠))
45 prcunqu 7447 . . . . . . . . 9 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑤 ∈ (2nd𝑠)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4626, 44, 45syl2anc 409 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4721, 46mpd 13 . . . . . . 7 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑞 ∈ (2nd𝑠))
4820, 47rexlimddv 2592 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝑠))
494, 48jca 304 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
50 simprl 526 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
5110, 50sseldd 3148 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
5251, 25syl 14 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
53 simpllr 529 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞Q)
54 prdisj 7454 . . . . . 6 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5552, 53, 54syl2anc 409 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5649, 55pm2.21fal 1368 . . . 4 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⊥)
573, 56rexlimddv 2592 . . 3 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ⊥)
5857inegd 1367 . 2 ((𝜑𝑞Q) → ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
5958ralrimiva 2543 1 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wfal 1353  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  Vcvv 2730  wss 3121  cop 3586   cuni 3796   cint 3831   class class class wbr 3989  dom cdm 4611  cima 4614  Fun wfun 5192  wf 5194  ontowfo 5196  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-qs 6519  df-ni 7266  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  suplocexprlemex  7684
  Copyright terms: Public domain W3C validator