ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemdisj GIF version

Theorem suplocexprlemdisj 7552
Description: Lemma for suplocexpr 7557. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemdisj (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑢   𝑥,𝐴,𝑦   𝑤,𝐵   𝜑,𝑞,𝑤   𝜑,𝑥,𝑦   𝑢,𝑞
Allowed substitution hints:   𝜑(𝑧,𝑢)   𝐴(𝑧,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑞)

Proof of Theorem suplocexprlemdisj
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → 𝑞 (1st𝐴))
2 suplocexprlemell 7545 . . . . 5 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
31, 2sylib 121 . . . 4 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 simprr 522 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
5 simplrr 526 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝐵))
6 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
7 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
8 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
96, 7, 8suplocexprlemss 7547 . . . . . . . . . . . 12 (𝜑𝐴P)
109ad3antrrr 484 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
11 suplocexpr.b . . . . . . . . . . . . 13 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1211suplocexprlem2b 7546 . . . . . . . . . . . 12 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1312eleq2d 2210 . . . . . . . . . . 11 (𝐴P → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1410, 13syl 14 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
15 breq2 3941 . . . . . . . . . . . 12 (𝑢 = 𝑞 → (𝑤 <Q 𝑢𝑤 <Q 𝑞))
1615rexbidv 2439 . . . . . . . . . . 11 (𝑢 = 𝑞 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1716elrab 2844 . . . . . . . . . 10 (𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1814, 17syl6bb 195 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)))
195, 18mpbid 146 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
2019simprd 113 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
21 simprr 522 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 <Q 𝑞)
2210adantr 274 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝐴P)
23 simplrl 525 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠𝐴)
2422, 23sseldd 3103 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠P)
25 prop 7307 . . . . . . . . . 10 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
2624, 25syl 14 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
27 eleq2 2204 . . . . . . . . . 10 (𝑡 = (2nd𝑠) → (𝑤𝑡𝑤 ∈ (2nd𝑠)))
28 simprl 521 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 (2nd𝐴))
29 vex 2692 . . . . . . . . . . . 12 𝑤 ∈ V
3029elint2 3786 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3128, 30sylib 121 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
32 fo2nd 6064 . . . . . . . . . . . . . 14 2nd :V–onto→V
33 fofun 5354 . . . . . . . . . . . . . 14 (2nd :V–onto→V → Fun 2nd )
3432, 33ax-mp 5 . . . . . . . . . . . . 13 Fun 2nd
35 vex 2692 . . . . . . . . . . . . . 14 𝑠 ∈ V
36 fof 5353 . . . . . . . . . . . . . . . 16 (2nd :V–onto→V → 2nd :V⟶V)
3732, 36ax-mp 5 . . . . . . . . . . . . . . 15 2nd :V⟶V
3837fdmi 5288 . . . . . . . . . . . . . 14 dom 2nd = V
3935, 38eleqtrri 2216 . . . . . . . . . . . . 13 𝑠 ∈ dom 2nd
40 funfvima 5657 . . . . . . . . . . . . 13 ((Fun 2nd𝑠 ∈ dom 2nd ) → (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴)))
4134, 39, 40mp2an 423 . . . . . . . . . . . 12 (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴))
4241ad2antrl 482 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (2nd𝑠) ∈ (2nd𝐴))
4342adantr 274 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (2nd𝑠) ∈ (2nd𝐴))
4427, 31, 43rspcdva 2798 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 ∈ (2nd𝑠))
45 prcunqu 7317 . . . . . . . . 9 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑤 ∈ (2nd𝑠)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4626, 44, 45syl2anc 409 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4721, 46mpd 13 . . . . . . 7 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑞 ∈ (2nd𝑠))
4820, 47rexlimddv 2557 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝑠))
494, 48jca 304 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
50 simprl 521 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
5110, 50sseldd 3103 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
5251, 25syl 14 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
53 simpllr 524 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞Q)
54 prdisj 7324 . . . . . 6 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5552, 53, 54syl2anc 409 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5649, 55pm2.21fal 1352 . . . 4 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⊥)
573, 56rexlimddv 2557 . . 3 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ⊥)
5857inegd 1351 . 2 ((𝜑𝑞Q) → ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
5958ralrimiva 2508 1 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wfal 1337  wex 1469  wcel 1481  wral 2417  wrex 2418  {crab 2421  Vcvv 2689  wss 3076  cop 3535   cuni 3744   cint 3779   class class class wbr 3937  dom cdm 4547  cima 4550  Fun wfun 5125  wf 5127  ontowfo 5129  cfv 5131  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   <Q cltq 7117  Pcnp 7123  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-qs 6443  df-ni 7136  df-nqqs 7180  df-ltnqqs 7185  df-inp 7298  df-iltp 7302
This theorem is referenced by:  suplocexprlemex  7554
  Copyright terms: Public domain W3C validator