ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemdisj GIF version

Theorem suplocexprlemdisj 7780
Description: Lemma for suplocexpr 7785. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemdisj (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑢   𝑥,𝐴,𝑦   𝑤,𝐵   𝜑,𝑞,𝑤   𝜑,𝑥,𝑦   𝑢,𝑞
Allowed substitution hints:   𝜑(𝑧,𝑢)   𝐴(𝑧,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑞)

Proof of Theorem suplocexprlemdisj
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → 𝑞 (1st𝐴))
2 suplocexprlemell 7773 . . . . 5 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
31, 2sylib 122 . . . 4 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 simprr 531 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
5 simplrr 536 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝐵))
6 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
7 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
8 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
96, 7, 8suplocexprlemss 7775 . . . . . . . . . . . 12 (𝜑𝐴P)
109ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
11 suplocexpr.b . . . . . . . . . . . . 13 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1211suplocexprlem2b 7774 . . . . . . . . . . . 12 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1312eleq2d 2263 . . . . . . . . . . 11 (𝐴P → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1410, 13syl 14 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
15 breq2 4033 . . . . . . . . . . . 12 (𝑢 = 𝑞 → (𝑤 <Q 𝑢𝑤 <Q 𝑞))
1615rexbidv 2495 . . . . . . . . . . 11 (𝑢 = 𝑞 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1716elrab 2916 . . . . . . . . . 10 (𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1814, 17bitrdi 196 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)))
195, 18mpbid 147 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
2019simprd 114 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
21 simprr 531 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 <Q 𝑞)
2210adantr 276 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝐴P)
23 simplrl 535 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠𝐴)
2422, 23sseldd 3180 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠P)
25 prop 7535 . . . . . . . . . 10 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
2624, 25syl 14 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
27 eleq2 2257 . . . . . . . . . 10 (𝑡 = (2nd𝑠) → (𝑤𝑡𝑤 ∈ (2nd𝑠)))
28 simprl 529 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 (2nd𝐴))
29 vex 2763 . . . . . . . . . . . 12 𝑤 ∈ V
3029elint2 3877 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3128, 30sylib 122 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
32 fo2nd 6211 . . . . . . . . . . . . . 14 2nd :V–onto→V
33 fofun 5477 . . . . . . . . . . . . . 14 (2nd :V–onto→V → Fun 2nd )
3432, 33ax-mp 5 . . . . . . . . . . . . 13 Fun 2nd
35 vex 2763 . . . . . . . . . . . . . 14 𝑠 ∈ V
36 fof 5476 . . . . . . . . . . . . . . . 16 (2nd :V–onto→V → 2nd :V⟶V)
3732, 36ax-mp 5 . . . . . . . . . . . . . . 15 2nd :V⟶V
3837fdmi 5411 . . . . . . . . . . . . . 14 dom 2nd = V
3935, 38eleqtrri 2269 . . . . . . . . . . . . 13 𝑠 ∈ dom 2nd
40 funfvima 5790 . . . . . . . . . . . . 13 ((Fun 2nd𝑠 ∈ dom 2nd ) → (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴)))
4134, 39, 40mp2an 426 . . . . . . . . . . . 12 (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴))
4241ad2antrl 490 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (2nd𝑠) ∈ (2nd𝐴))
4342adantr 276 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (2nd𝑠) ∈ (2nd𝐴))
4427, 31, 43rspcdva 2869 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 ∈ (2nd𝑠))
45 prcunqu 7545 . . . . . . . . 9 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑤 ∈ (2nd𝑠)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4626, 44, 45syl2anc 411 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4721, 46mpd 13 . . . . . . 7 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑞 ∈ (2nd𝑠))
4820, 47rexlimddv 2616 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝑠))
494, 48jca 306 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
50 simprl 529 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
5110, 50sseldd 3180 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
5251, 25syl 14 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
53 simpllr 534 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞Q)
54 prdisj 7552 . . . . . 6 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5552, 53, 54syl2anc 411 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5649, 55pm2.21fal 1384 . . . 4 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⊥)
573, 56rexlimddv 2616 . . 3 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ⊥)
5857inegd 1383 . 2 ((𝜑𝑞Q) → ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
5958ralrimiva 2567 1 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wfal 1369  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  wss 3153  cop 3621   cuni 3835   cint 3870   class class class wbr 4029  dom cdm 4659  cima 4662  Fun wfun 5248  wf 5250  ontowfo 5252  cfv 5254  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   <Q cltq 7345  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-ltnqqs 7413  df-inp 7526  df-iltp 7530
This theorem is referenced by:  suplocexprlemex  7782
  Copyright terms: Public domain W3C validator