ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemdisj GIF version

Theorem suplocexprlemdisj 7787
Description: Lemma for suplocexpr 7792. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemdisj (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑢   𝑥,𝐴,𝑦   𝑤,𝐵   𝜑,𝑞,𝑤   𝜑,𝑥,𝑦   𝑢,𝑞
Allowed substitution hints:   𝜑(𝑧,𝑢)   𝐴(𝑧,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑞)

Proof of Theorem suplocexprlemdisj
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → 𝑞 (1st𝐴))
2 suplocexprlemell 7780 . . . . 5 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
31, 2sylib 122 . . . 4 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 simprr 531 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
5 simplrr 536 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝐵))
6 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
7 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
8 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
96, 7, 8suplocexprlemss 7782 . . . . . . . . . . . 12 (𝜑𝐴P)
109ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
11 suplocexpr.b . . . . . . . . . . . . 13 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1211suplocexprlem2b 7781 . . . . . . . . . . . 12 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1312eleq2d 2266 . . . . . . . . . . 11 (𝐴P → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1410, 13syl 14 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
15 breq2 4037 . . . . . . . . . . . 12 (𝑢 = 𝑞 → (𝑤 <Q 𝑢𝑤 <Q 𝑞))
1615rexbidv 2498 . . . . . . . . . . 11 (𝑢 = 𝑞 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1716elrab 2920 . . . . . . . . . 10 (𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
1814, 17bitrdi 196 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (2nd𝐵) ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)))
195, 18mpbid 147 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
2019simprd 114 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
21 simprr 531 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 <Q 𝑞)
2210adantr 276 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝐴P)
23 simplrl 535 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠𝐴)
2422, 23sseldd 3184 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑠P)
25 prop 7542 . . . . . . . . . 10 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
2624, 25syl 14 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
27 eleq2 2260 . . . . . . . . . 10 (𝑡 = (2nd𝑠) → (𝑤𝑡𝑤 ∈ (2nd𝑠)))
28 simprl 529 . . . . . . . . . . 11 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 (2nd𝐴))
29 vex 2766 . . . . . . . . . . . 12 𝑤 ∈ V
3029elint2 3881 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3128, 30sylib 122 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
32 fo2nd 6216 . . . . . . . . . . . . . 14 2nd :V–onto→V
33 fofun 5481 . . . . . . . . . . . . . 14 (2nd :V–onto→V → Fun 2nd )
3432, 33ax-mp 5 . . . . . . . . . . . . 13 Fun 2nd
35 vex 2766 . . . . . . . . . . . . . 14 𝑠 ∈ V
36 fof 5480 . . . . . . . . . . . . . . . 16 (2nd :V–onto→V → 2nd :V⟶V)
3732, 36ax-mp 5 . . . . . . . . . . . . . . 15 2nd :V⟶V
3837fdmi 5415 . . . . . . . . . . . . . 14 dom 2nd = V
3935, 38eleqtrri 2272 . . . . . . . . . . . . 13 𝑠 ∈ dom 2nd
40 funfvima 5794 . . . . . . . . . . . . 13 ((Fun 2nd𝑠 ∈ dom 2nd ) → (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴)))
4134, 39, 40mp2an 426 . . . . . . . . . . . 12 (𝑠𝐴 → (2nd𝑠) ∈ (2nd𝐴))
4241ad2antrl 490 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (2nd𝑠) ∈ (2nd𝐴))
4342adantr 276 . . . . . . . . . 10 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (2nd𝑠) ∈ (2nd𝐴))
4427, 31, 43rspcdva 2873 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑤 ∈ (2nd𝑠))
45 prcunqu 7552 . . . . . . . . 9 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑤 ∈ (2nd𝑠)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4626, 44, 45syl2anc 411 . . . . . . . 8 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → (𝑤 <Q 𝑞𝑞 ∈ (2nd𝑠)))
4721, 46mpd 13 . . . . . . 7 (((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞)) → 𝑞 ∈ (2nd𝑠))
4820, 47rexlimddv 2619 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (2nd𝑠))
494, 48jca 306 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
50 simprl 529 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
5110, 50sseldd 3184 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
5251, 25syl 14 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
53 simpllr 534 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞Q)
54 prdisj 7559 . . . . . 6 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5552, 53, 54syl2anc 411 . . . . 5 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
5649, 55pm2.21fal 1384 . . . 4 ((((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⊥)
573, 56rexlimddv 2619 . . 3 (((𝜑𝑞Q) ∧ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵))) → ⊥)
5857inegd 1383 . 2 ((𝜑𝑞Q) → ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
5958ralrimiva 2570 1 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wfal 1369  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157  cop 3625   cuni 3839   cint 3874   class class class wbr 4033  dom cdm 4663  cima 4666  Fun wfun 5252  wf 5254  ontowfo 5256  cfv 5258  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   <Q cltq 7352  Pcnp 7358  <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-ltnqqs 7420  df-inp 7533  df-iltp 7537
This theorem is referenced by:  suplocexprlemex  7789
  Copyright terms: Public domain W3C validator