Step | Hyp | Ref
| Expression |
1 | | oveq2 5883 |
. . . . 5
β’ (π = 1 β (π₯βπ) = (π₯β1)) |
2 | 1 | mpteq2dv 4095 |
. . . 4
β’ (π = 1 β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯β1))) |
3 | 2 | oveq2d 5891 |
. . 3
β’ (π = 1 β (β D (π₯ β β β¦ (π₯βπ))) = (β D (π₯ β β β¦ (π₯β1)))) |
4 | | id 19 |
. . . . 5
β’ (π = 1 β π = 1) |
5 | | oveq1 5882 |
. . . . . 6
β’ (π = 1 β (π β 1) = (1 β 1)) |
6 | 5 | oveq2d 5891 |
. . . . 5
β’ (π = 1 β (π₯β(π β 1)) = (π₯β(1 β 1))) |
7 | 4, 6 | oveq12d 5893 |
. . . 4
β’ (π = 1 β (π Β· (π₯β(π β 1))) = (1 Β· (π₯β(1 β
1)))) |
8 | 7 | mpteq2dv 4095 |
. . 3
β’ (π = 1 β (π₯ β β β¦ (π Β· (π₯β(π β 1)))) = (π₯ β β β¦ (1 Β· (π₯β(1 β
1))))) |
9 | 3, 8 | eqeq12d 2192 |
. 2
β’ (π = 1 β ((β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (β D (π₯ β β β¦ (π₯β1))) = (π₯ β β β¦ (1 Β· (π₯β(1 β
1)))))) |
10 | | oveq2 5883 |
. . . . 5
β’ (π = π β (π₯βπ) = (π₯βπ)) |
11 | 10 | mpteq2dv 4095 |
. . . 4
β’ (π = π β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
12 | 11 | oveq2d 5891 |
. . 3
β’ (π = π β (β D (π₯ β β β¦ (π₯βπ))) = (β D (π₯ β β β¦ (π₯βπ)))) |
13 | | id 19 |
. . . . 5
β’ (π = π β π = π) |
14 | | oveq1 5882 |
. . . . . 6
β’ (π = π β (π β 1) = (π β 1)) |
15 | 14 | oveq2d 5891 |
. . . . 5
β’ (π = π β (π₯β(π β 1)) = (π₯β(π β 1))) |
16 | 13, 15 | oveq12d 5893 |
. . . 4
β’ (π = π β (π Β· (π₯β(π β 1))) = (π Β· (π₯β(π β 1)))) |
17 | 16 | mpteq2dv 4095 |
. . 3
β’ (π = π β (π₯ β β β¦ (π Β· (π₯β(π β 1)))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |
18 | 12, 17 | eqeq12d 2192 |
. 2
β’ (π = π β ((β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))))) |
19 | | oveq2 5883 |
. . . . 5
β’ (π = (π + 1) β (π₯βπ) = (π₯β(π + 1))) |
20 | 19 | mpteq2dv 4095 |
. . . 4
β’ (π = (π + 1) β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯β(π + 1)))) |
21 | 20 | oveq2d 5891 |
. . 3
β’ (π = (π + 1) β (β D (π₯ β β β¦ (π₯βπ))) = (β D (π₯ β β β¦ (π₯β(π + 1))))) |
22 | | id 19 |
. . . . 5
β’ (π = (π + 1) β π = (π + 1)) |
23 | | oveq1 5882 |
. . . . . 6
β’ (π = (π + 1) β (π β 1) = ((π + 1) β 1)) |
24 | 23 | oveq2d 5891 |
. . . . 5
β’ (π = (π + 1) β (π₯β(π β 1)) = (π₯β((π + 1) β 1))) |
25 | 22, 24 | oveq12d 5893 |
. . . 4
β’ (π = (π + 1) β (π Β· (π₯β(π β 1))) = ((π + 1) Β· (π₯β((π + 1) β 1)))) |
26 | 25 | mpteq2dv 4095 |
. . 3
β’ (π = (π + 1) β (π₯ β β β¦ (π Β· (π₯β(π β 1)))) = (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1))))) |
27 | 21, 26 | eqeq12d 2192 |
. 2
β’ (π = (π + 1) β ((β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (β D (π₯ β β β¦ (π₯β(π + 1)))) = (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1)))))) |
28 | | oveq2 5883 |
. . . . 5
β’ (π = π β (π₯βπ) = (π₯βπ)) |
29 | 28 | mpteq2dv 4095 |
. . . 4
β’ (π = π β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
30 | 29 | oveq2d 5891 |
. . 3
β’ (π = π β (β D (π₯ β β β¦ (π₯βπ))) = (β D (π₯ β β β¦ (π₯βπ)))) |
31 | | id 19 |
. . . . 5
β’ (π = π β π = π) |
32 | | oveq1 5882 |
. . . . . 6
β’ (π = π β (π β 1) = (π β 1)) |
33 | 32 | oveq2d 5891 |
. . . . 5
β’ (π = π β (π₯β(π β 1)) = (π₯β(π β 1))) |
34 | 31, 33 | oveq12d 5893 |
. . . 4
β’ (π = π β (π Β· (π₯β(π β 1))) = (π Β· (π₯β(π β 1)))) |
35 | 34 | mpteq2dv 4095 |
. . 3
β’ (π = π β (π₯ β β β¦ (π Β· (π₯β(π β 1)))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |
36 | 30, 35 | eqeq12d 2192 |
. 2
β’ (π = π β ((β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))))) |
37 | | exp1 10526 |
. . . . . 6
β’ (π₯ β β β (π₯β1) = π₯) |
38 | 37 | mpteq2ia 4090 |
. . . . 5
β’ (π₯ β β β¦ (π₯β1)) = (π₯ β β β¦ π₯) |
39 | | mptresid 4962 |
. . . . 5
β’ (π₯ β β β¦ π₯) = ( I βΎ
β) |
40 | 38, 39 | eqtri 2198 |
. . . 4
β’ (π₯ β β β¦ (π₯β1)) = ( I βΎ
β) |
41 | 40 | oveq2i 5886 |
. . 3
β’ (β
D (π₯ β β β¦
(π₯β1))) = (β D (
I βΎ β)) |
42 | | 1m1e0 8988 |
. . . . . . . . . 10
β’ (1
β 1) = 0 |
43 | 42 | oveq2i 5886 |
. . . . . . . . 9
β’ (π₯β(1 β 1)) = (π₯β0) |
44 | | exp0 10524 |
. . . . . . . . 9
β’ (π₯ β β β (π₯β0) = 1) |
45 | 43, 44 | eqtrid 2222 |
. . . . . . . 8
β’ (π₯ β β β (π₯β(1 β 1)) =
1) |
46 | 45 | oveq2d 5891 |
. . . . . . 7
β’ (π₯ β β β (1
Β· (π₯β(1 β
1))) = (1 Β· 1)) |
47 | | 1t1e1 9071 |
. . . . . . 7
β’ (1
Β· 1) = 1 |
48 | 46, 47 | eqtrdi 2226 |
. . . . . 6
β’ (π₯ β β β (1
Β· (π₯β(1 β
1))) = 1) |
49 | 48 | mpteq2ia 4090 |
. . . . 5
β’ (π₯ β β β¦ (1
Β· (π₯β(1 β
1)))) = (π₯ β β
β¦ 1) |
50 | | fconstmpt 4674 |
. . . . 5
β’ (β
Γ {1}) = (π₯ β
β β¦ 1) |
51 | 49, 50 | eqtr4i 2201 |
. . . 4
β’ (π₯ β β β¦ (1
Β· (π₯β(1 β
1)))) = (β Γ {1}) |
52 | | dvid 14165 |
. . . 4
β’ (β
D ( I βΎ β)) = (β Γ {1}) |
53 | 51, 52 | eqtr4i 2201 |
. . 3
β’ (π₯ β β β¦ (1
Β· (π₯β(1 β
1)))) = (β D ( I βΎ β)) |
54 | 41, 53 | eqtr4i 2201 |
. 2
β’ (β
D (π₯ β β β¦
(π₯β1))) = (π₯ β β β¦ (1
Β· (π₯β(1 β
1)))) |
55 | | nncn 8927 |
. . . . . . . . . . . 12
β’ (π β β β π β
β) |
56 | 55 | adantr 276 |
. . . . . . . . . . 11
β’ ((π β β β§ π₯ β β) β π β
β) |
57 | | ax-1cn 7904 |
. . . . . . . . . . 11
β’ 1 β
β |
58 | | pncan 8163 |
. . . . . . . . . . 11
β’ ((π β β β§ 1 β
β) β ((π + 1)
β 1) = π) |
59 | 56, 57, 58 | sylancl 413 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β) β ((π + 1) β 1) = π) |
60 | 59 | oveq2d 5891 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β (π₯β((π + 1) β 1)) = (π₯βπ)) |
61 | 60 | oveq2d 5891 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β) β ((π + 1) Β· (π₯β((π + 1) β 1))) = ((π + 1) Β· (π₯βπ))) |
62 | 57 | a1i 9 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β 1 β
β) |
63 | | id 19 |
. . . . . . . . . 10
β’ (π₯ β β β π₯ β
β) |
64 | | nnnn0 9183 |
. . . . . . . . . 10
β’ (π β β β π β
β0) |
65 | | expcl 10538 |
. . . . . . . . . 10
β’ ((π₯ β β β§ π β β0)
β (π₯βπ) β
β) |
66 | 63, 64, 65 | syl2anr 290 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β (π₯βπ) β β) |
67 | 56, 62, 66 | adddird 7983 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β) β ((π + 1) Β· (π₯βπ)) = ((π Β· (π₯βπ)) + (1 Β· (π₯βπ)))) |
68 | 66 | mulid2d 7976 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β (1
Β· (π₯βπ)) = (π₯βπ)) |
69 | 68 | oveq2d 5891 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β) β ((π Β· (π₯βπ)) + (1 Β· (π₯βπ))) = ((π Β· (π₯βπ)) + (π₯βπ))) |
70 | 61, 67, 69 | 3eqtrd 2214 |
. . . . . . 7
β’ ((π β β β§ π₯ β β) β ((π + 1) Β· (π₯β((π + 1) β 1))) = ((π Β· (π₯βπ)) + (π₯βπ))) |
71 | 70 | mpteq2dva 4094 |
. . . . . 6
β’ (π β β β (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1)))) = (π₯ β β β¦ ((π Β· (π₯βπ)) + (π₯βπ)))) |
72 | | cnex 7935 |
. . . . . . . 8
β’ β
β V |
73 | 72 | a1i 9 |
. . . . . . 7
β’ (π β β β β
β V) |
74 | 56, 66 | mulcld 7978 |
. . . . . . 7
β’ ((π β β β§ π₯ β β) β (π Β· (π₯βπ)) β β) |
75 | | nnm1nn0 9217 |
. . . . . . . . . . 11
β’ (π β β β (π β 1) β
β0) |
76 | | expcl 10538 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ (π β 1) β
β0) β (π₯β(π β 1)) β β) |
77 | 63, 75, 76 | syl2anr 290 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β) β (π₯β(π β 1)) β β) |
78 | 56, 77 | mulcld 7978 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β (π Β· (π₯β(π β 1))) β
β) |
79 | | simpr 110 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β π₯ β
β) |
80 | | eqidd 2178 |
. . . . . . . . 9
β’ (π β β β (π₯ β β β¦ (π Β· (π₯β(π β 1)))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |
81 | 39 | eqcomi 2181 |
. . . . . . . . . 10
β’ ( I
βΎ β) = (π₯
β β β¦ π₯) |
82 | 81 | a1i 9 |
. . . . . . . . 9
β’ (π β β β ( I
βΎ β) = (π₯
β β β¦ π₯)) |
83 | 73, 78, 79, 80, 82 | offval2 6098 |
. . . . . . . 8
β’ (π β β β ((π₯ β β β¦ (π Β· (π₯β(π β 1)))) βπ
Β· ( I βΎ β)) = (π₯ β β β¦ ((π Β· (π₯β(π β 1))) Β· π₯))) |
84 | 56, 77, 79 | mulassd 7981 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β) β ((π Β· (π₯β(π β 1))) Β· π₯) = (π Β· ((π₯β(π β 1)) Β· π₯))) |
85 | | expm1t 10548 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ π β β) β (π₯βπ) = ((π₯β(π β 1)) Β· π₯)) |
86 | 85 | ancoms 268 |
. . . . . . . . . . 11
β’ ((π β β β§ π₯ β β) β (π₯βπ) = ((π₯β(π β 1)) Β· π₯)) |
87 | 86 | oveq2d 5891 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β) β (π Β· (π₯βπ)) = (π Β· ((π₯β(π β 1)) Β· π₯))) |
88 | 84, 87 | eqtr4d 2213 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β) β ((π Β· (π₯β(π β 1))) Β· π₯) = (π Β· (π₯βπ))) |
89 | 88 | mpteq2dva 4094 |
. . . . . . . 8
β’ (π β β β (π₯ β β β¦ ((π Β· (π₯β(π β 1))) Β· π₯)) = (π₯ β β β¦ (π Β· (π₯βπ)))) |
90 | 83, 89 | eqtrd 2210 |
. . . . . . 7
β’ (π β β β ((π₯ β β β¦ (π Β· (π₯β(π β 1)))) βπ
Β· ( I βΎ β)) = (π₯ β β β¦ (π Β· (π₯βπ)))) |
91 | 52, 50 | eqtri 2198 |
. . . . . . . . . 10
β’ (β
D ( I βΎ β)) = (π₯ β β β¦ 1) |
92 | 91 | a1i 9 |
. . . . . . . . 9
β’ (π β β β (β
D ( I βΎ β)) = (π₯ β β β¦ 1)) |
93 | | eqidd 2178 |
. . . . . . . . 9
β’ (π β β β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
94 | 73, 62, 66, 92, 93 | offval2 6098 |
. . . . . . . 8
β’ (π β β β ((β
D ( I βΎ β)) βπ Β· (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (1 Β· (π₯βπ)))) |
95 | 68 | mpteq2dva 4094 |
. . . . . . . 8
β’ (π β β β (π₯ β β β¦ (1
Β· (π₯βπ))) = (π₯ β β β¦ (π₯βπ))) |
96 | 94, 95 | eqtrd 2210 |
. . . . . . 7
β’ (π β β β ((β
D ( I βΎ β)) βπ Β· (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π₯βπ))) |
97 | 73, 74, 66, 90, 96 | offval2 6098 |
. . . . . 6
β’ (π β β β (((π₯ β β β¦ (π Β· (π₯β(π β 1)))) βπ
Β· ( I βΎ β)) βπ + ((β D ( I
βΎ β)) βπ Β· (π₯ β β β¦ (π₯βπ)))) = (π₯ β β β¦ ((π Β· (π₯βπ)) + (π₯βπ)))) |
98 | 71, 97 | eqtr4d 2213 |
. . . . 5
β’ (π β β β (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1)))) = (((π₯ β β β¦ (π Β· (π₯β(π β 1)))) βπ
Β· ( I βΎ β)) βπ + ((β D ( I
βΎ β)) βπ Β· (π₯ β β β¦ (π₯βπ))))) |
99 | | oveq1 5882 |
. . . . . . 7
β’ ((β
D (π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β ((β D (π₯ β β β¦ (π₯βπ))) βπ Β· ( I
βΎ β)) = ((π₯
β β β¦ (π
Β· (π₯β(π β 1))))
βπ Β· ( I βΎ β))) |
100 | 99 | oveq1d 5890 |
. . . . . 6
β’ ((β
D (π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (((β D (π₯ β β β¦ (π₯βπ))) βπ Β· ( I
βΎ β)) βπ + ((β D ( I βΎ
β)) βπ Β· (π₯ β β β¦ (π₯βπ)))) = (((π₯ β β β¦ (π Β· (π₯β(π β 1)))) βπ
Β· ( I βΎ β)) βπ + ((β D ( I
βΎ β)) βπ Β· (π₯ β β β¦ (π₯βπ))))) |
101 | 100 | eqcomd 2183 |
. . . . 5
β’ ((β
D (π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (((π₯ β β β¦ (π Β· (π₯β(π β 1)))) βπ
Β· ( I βΎ β)) βπ + ((β D ( I
βΎ β)) βπ Β· (π₯ β β β¦ (π₯βπ)))) = (((β D (π₯ β β β¦ (π₯βπ))) βπ Β· ( I
βΎ β)) βπ + ((β D ( I βΎ
β)) βπ Β· (π₯ β β β¦ (π₯βπ))))) |
102 | 98, 101 | sylan9eq 2230 |
. . . 4
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1)))) = (((β D (π₯ β β β¦ (π₯βπ))) βπ Β· ( I
βΎ β)) βπ + ((β D ( I βΎ
β)) βπ Β· (π₯ β β β¦ (π₯βπ))))) |
103 | | cnelprrecn 7947 |
. . . . . 6
β’ β
β {β, β} |
104 | 103 | a1i 9 |
. . . . 5
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β β β
{β, β}) |
105 | | ssidd 3177 |
. . . . 5
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β β β
β) |
106 | 66 | fmpttd 5672 |
. . . . . 6
β’ (π β β β (π₯ β β β¦ (π₯βπ)):ββΆβ) |
107 | 106 | adantr 276 |
. . . . 5
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (π₯ β β β¦ (π₯βπ)):ββΆβ) |
108 | | f1oi 5500 |
. . . . . 6
β’ ( I
βΎ β):ββ1-1-ontoββ |
109 | | f1of 5462 |
. . . . . 6
β’ (( I
βΎ β):ββ1-1-ontoββ β ( I βΎ
β):ββΆβ) |
110 | 108, 109 | mp1i 10 |
. . . . 5
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β ( I βΎ
β):ββΆβ) |
111 | | simpr 110 |
. . . . . . 7
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |
112 | 111 | dmeqd 4830 |
. . . . . 6
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β dom (β D (π₯ β β β¦ (π₯βπ))) = dom (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |
113 | 78 | fmpttd 5672 |
. . . . . . . 8
β’ (π β β β (π₯ β β β¦ (π Β· (π₯β(π β
1)))):ββΆβ) |
114 | 113 | adantr 276 |
. . . . . . 7
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (π₯ β β β¦ (π Β· (π₯β(π β
1)))):ββΆβ) |
115 | 114 | fdmd 5373 |
. . . . . 6
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β dom (π₯ β β β¦ (π Β· (π₯β(π β 1)))) = β) |
116 | 112, 115 | eqtrd 2210 |
. . . . 5
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β dom (β D (π₯ β β β¦ (π₯βπ))) = β) |
117 | | 1ex 7952 |
. . . . . . . . 9
β’ 1 β
V |
118 | 117 | fconst 5412 |
. . . . . . . 8
β’ (β
Γ {1}):ββΆ{1} |
119 | 52 | feq1i 5359 |
. . . . . . . 8
β’ ((β
D ( I βΎ β)):ββΆ{1} β (β Γ
{1}):ββΆ{1}) |
120 | 118, 119 | mpbir 146 |
. . . . . . 7
β’ (β
D ( I βΎ β)):ββΆ{1} |
121 | 120 | fdmi 5374 |
. . . . . 6
β’ dom
(β D ( I βΎ β)) = β |
122 | 121 | a1i 9 |
. . . . 5
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β dom (β D ( I
βΎ β)) = β) |
123 | 104, 105,
107, 110, 116, 122 | dvimulf 14173 |
. . . 4
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (β D ((π₯ β β β¦ (π₯βπ)) βπ Β· ( I
βΎ β))) = (((β D (π₯ β β β¦ (π₯βπ))) βπ Β· ( I
βΎ β)) βπ + ((β D ( I βΎ
β)) βπ Β· (π₯ β β β¦ (π₯βπ))))) |
124 | 73, 66, 79, 93, 82 | offval2 6098 |
. . . . . . 7
β’ (π β β β ((π₯ β β β¦ (π₯βπ)) βπ Β· ( I
βΎ β)) = (π₯
β β β¦ ((π₯βπ) Β· π₯))) |
125 | | expp1 10527 |
. . . . . . . . 9
β’ ((π₯ β β β§ π β β0)
β (π₯β(π + 1)) = ((π₯βπ) Β· π₯)) |
126 | 63, 64, 125 | syl2anr 290 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β) β (π₯β(π + 1)) = ((π₯βπ) Β· π₯)) |
127 | 126 | mpteq2dva 4094 |
. . . . . . 7
β’ (π β β β (π₯ β β β¦ (π₯β(π + 1))) = (π₯ β β β¦ ((π₯βπ) Β· π₯))) |
128 | 124, 127 | eqtr4d 2213 |
. . . . . 6
β’ (π β β β ((π₯ β β β¦ (π₯βπ)) βπ Β· ( I
βΎ β)) = (π₯
β β β¦ (π₯β(π + 1)))) |
129 | 128 | oveq2d 5891 |
. . . . 5
β’ (π β β β (β
D ((π₯ β β
β¦ (π₯βπ)) βπ
Β· ( I βΎ β))) = (β D (π₯ β β β¦ (π₯β(π + 1))))) |
130 | 129 | adantr 276 |
. . . 4
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (β D ((π₯ β β β¦ (π₯βπ)) βπ Β· ( I
βΎ β))) = (β D (π₯ β β β¦ (π₯β(π + 1))))) |
131 | 102, 123,
130 | 3eqtr2rd 2217 |
. . 3
β’ ((π β β β§ (β D
(π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) β (β D (π₯ β β β¦ (π₯β(π + 1)))) = (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1))))) |
132 | 131 | ex 115 |
. 2
β’ (π β β β ((β
D (π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1)))) β (β D (π₯ β β β¦ (π₯β(π + 1)))) = (π₯ β β β¦ ((π + 1) Β· (π₯β((π + 1) β 1)))))) |
133 | 9, 18, 27, 36, 54, 132 | nnind 8935 |
1
β’ (π β β β (β
D (π₯ β β β¦
(π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |