| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inftonninf | GIF version | ||
| Description: The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| inftonninf | ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i | . . 3 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 2 | 1 | fveq1i 5604 | . 2 ⊢ (𝐼‘+∞) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) |
| 3 | pnf0xnn0 9407 | . . 3 ⊢ +∞ ∈ ℕ0* | |
| 4 | omex 4662 | . . . 4 ⊢ ω ∈ V | |
| 5 | 1oex 6540 | . . . . 5 ⊢ 1o ∈ V | |
| 6 | 5 | snex 4248 | . . . 4 ⊢ {1o} ∈ V |
| 7 | 4, 6 | xpex 4811 | . . 3 ⊢ (ω × {1o}) ∈ V |
| 8 | pnfnre 8156 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
| 9 | 8 | neli 2477 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
| 10 | nn0re 9346 | . . . . 5 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 11 | 9, 10 | mto 666 | . . . 4 ⊢ ¬ +∞ ∈ ℕ0 |
| 12 | fxnn0nninf.g | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 13 | fxnn0nninf.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 14 | 12, 13 | fnn0nninf 10627 | . . . . . 6 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| 15 | 14 | fdmi 5457 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐺) = ℕ0 |
| 16 | 15 | eleq2i 2276 | . . . 4 ⊢ (+∞ ∈ dom (𝐹 ∘ ◡𝐺) ↔ +∞ ∈ ℕ0) |
| 17 | 11, 16 | mtbir 675 | . . 3 ⊢ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺) |
| 18 | fsnunfv 5813 | . . 3 ⊢ ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o})) | |
| 19 | 3, 7, 17, 18 | mp3an 1352 | . 2 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o}) |
| 20 | fconstmpt 4743 | . 2 ⊢ (ω × {1o}) = (𝑥 ∈ ω ↦ 1o) | |
| 21 | 2, 19, 20 | 3eqtri 2234 | 1 ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 ∅c0 3471 ifcif 3582 {csn 3646 〈cop 3649 ↦ cmpt 4124 ωcom 4659 × cxp 4694 ◡ccnv 4695 dom cdm 4696 ∘ ccom 4700 ‘cfv 5294 (class class class)co 5974 freccfrec 6506 1oc1o 6525 ℕ∞xnninf 7254 ℝcr 7966 0cc0 7967 1c1 7968 + caddc 7970 +∞cpnf 8146 ℕ0cn0 9337 ℕ0*cxnn0 9400 ℤcz 9414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-recs 6421 df-frec 6507 df-1o 6532 df-2o 6533 df-map 6767 df-nninf 7255 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-xnn0 9401 df-z 9415 df-uz 9691 |
| This theorem is referenced by: nninfctlemfo 12527 |
| Copyright terms: Public domain | W3C validator |