| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inftonninf | GIF version | ||
| Description: The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| inftonninf | ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i | . . 3 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 2 | 1 | fveq1i 5562 | . 2 ⊢ (𝐼‘+∞) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) |
| 3 | pnf0xnn0 9336 | . . 3 ⊢ +∞ ∈ ℕ0* | |
| 4 | omex 4630 | . . . 4 ⊢ ω ∈ V | |
| 5 | 1oex 6491 | . . . . 5 ⊢ 1o ∈ V | |
| 6 | 5 | snex 4219 | . . . 4 ⊢ {1o} ∈ V |
| 7 | 4, 6 | xpex 4779 | . . 3 ⊢ (ω × {1o}) ∈ V |
| 8 | pnfnre 8085 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
| 9 | 8 | neli 2464 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
| 10 | nn0re 9275 | . . . . 5 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 11 | 9, 10 | mto 663 | . . . 4 ⊢ ¬ +∞ ∈ ℕ0 |
| 12 | fxnn0nninf.g | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 13 | fxnn0nninf.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 14 | 12, 13 | fnn0nninf 10547 | . . . . . 6 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| 15 | 14 | fdmi 5418 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐺) = ℕ0 |
| 16 | 15 | eleq2i 2263 | . . . 4 ⊢ (+∞ ∈ dom (𝐹 ∘ ◡𝐺) ↔ +∞ ∈ ℕ0) |
| 17 | 11, 16 | mtbir 672 | . . 3 ⊢ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺) |
| 18 | fsnunfv 5766 | . . 3 ⊢ ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o})) | |
| 19 | 3, 7, 17, 18 | mp3an 1348 | . 2 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o}) |
| 20 | fconstmpt 4711 | . 2 ⊢ (ω × {1o}) = (𝑥 ∈ ω ↦ 1o) | |
| 21 | 2, 19, 20 | 3eqtri 2221 | 1 ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∅c0 3451 ifcif 3562 {csn 3623 〈cop 3626 ↦ cmpt 4095 ωcom 4627 × cxp 4662 ◡ccnv 4663 dom cdm 4664 ∘ ccom 4668 ‘cfv 5259 (class class class)co 5925 freccfrec 6457 1oc1o 6476 ℕ∞xnninf 7194 ℝcr 7895 0cc0 7896 1c1 7897 + caddc 7899 +∞cpnf 8075 ℕ0cn0 9266 ℕ0*cxnn0 9329 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-1o 6483 df-2o 6484 df-map 6718 df-nninf 7195 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-xnn0 9330 df-z 9344 df-uz 9619 |
| This theorem is referenced by: nninfctlemfo 12232 |
| Copyright terms: Public domain | W3C validator |