![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inftonninf | GIF version |
Description: The mapping of +β into ββ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | β’ πΊ = frec((π₯ β β€ β¦ (π₯ + 1)), 0) |
fxnn0nninf.f | β’ πΉ = (π β Ο β¦ (π β Ο β¦ if(π β π, 1o, β ))) |
fxnn0nninf.i | β’ πΌ = ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}) |
Ref | Expression |
---|---|
inftonninf | β’ (πΌβ+β) = (π₯ β Ο β¦ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.i | . . 3 β’ πΌ = ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}) | |
2 | 1 | fveq1i 5517 | . 2 β’ (πΌβ+β) = (((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©})β+β) |
3 | pnf0xnn0 9246 | . . 3 β’ +β β β0* | |
4 | omex 4593 | . . . 4 β’ Ο β V | |
5 | 1oex 6425 | . . . . 5 β’ 1o β V | |
6 | 5 | snex 4186 | . . . 4 β’ {1o} β V |
7 | 4, 6 | xpex 4742 | . . 3 β’ (Ο Γ {1o}) β V |
8 | pnfnre 7999 | . . . . . 6 β’ +β β β | |
9 | 8 | neli 2444 | . . . . 5 β’ Β¬ +β β β |
10 | nn0re 9185 | . . . . 5 β’ (+β β β0 β +β β β) | |
11 | 9, 10 | mto 662 | . . . 4 β’ Β¬ +β β β0 |
12 | fxnn0nninf.g | . . . . . . 7 β’ πΊ = frec((π₯ β β€ β¦ (π₯ + 1)), 0) | |
13 | fxnn0nninf.f | . . . . . . 7 β’ πΉ = (π β Ο β¦ (π β Ο β¦ if(π β π, 1o, β ))) | |
14 | 12, 13 | fnn0nninf 10437 | . . . . . 6 β’ (πΉ β β‘πΊ):β0βΆββ |
15 | 14 | fdmi 5374 | . . . . 5 β’ dom (πΉ β β‘πΊ) = β0 |
16 | 15 | eleq2i 2244 | . . . 4 β’ (+β β dom (πΉ β β‘πΊ) β +β β β0) |
17 | 11, 16 | mtbir 671 | . . 3 β’ Β¬ +β β dom (πΉ β β‘πΊ) |
18 | fsnunfv 5718 | . . 3 β’ ((+β β β0* β§ (Ο Γ {1o}) β V β§ Β¬ +β β dom (πΉ β β‘πΊ)) β (((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©})β+β) = (Ο Γ {1o})) | |
19 | 3, 7, 17, 18 | mp3an 1337 | . 2 β’ (((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©})β+β) = (Ο Γ {1o}) |
20 | fconstmpt 4674 | . 2 β’ (Ο Γ {1o}) = (π₯ β Ο β¦ 1o) | |
21 | 2, 19, 20 | 3eqtri 2202 | 1 β’ (πΌβ+β) = (π₯ β Ο β¦ 1o) |
Colors of variables: wff set class |
Syntax hints: Β¬ wn 3 = wceq 1353 β wcel 2148 Vcvv 2738 βͺ cun 3128 β c0 3423 ifcif 3535 {csn 3593 β¨cop 3596 β¦ cmpt 4065 Οcom 4590 Γ cxp 4625 β‘ccnv 4626 dom cdm 4627 β ccom 4631 βcfv 5217 (class class class)co 5875 freccfrec 6391 1oc1o 6410 ββxnninf 7118 βcr 7810 0cc0 7811 1c1 7812 + caddc 7814 +βcpnf 7989 β0cn0 9176 β0*cxnn0 9239 β€cz 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-recs 6306 df-frec 6392 df-1o 6417 df-2o 6418 df-map 6650 df-nninf 7119 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-xnn0 9240 df-z 9254 df-uz 9529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |