![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inftonninf | GIF version |
Description: The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
Ref | Expression |
---|---|
inftonninf | ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.i | . . 3 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
2 | 1 | fveq1i 5556 | . 2 ⊢ (𝐼‘+∞) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) |
3 | pnf0xnn0 9313 | . . 3 ⊢ +∞ ∈ ℕ0* | |
4 | omex 4626 | . . . 4 ⊢ ω ∈ V | |
5 | 1oex 6479 | . . . . 5 ⊢ 1o ∈ V | |
6 | 5 | snex 4215 | . . . 4 ⊢ {1o} ∈ V |
7 | 4, 6 | xpex 4775 | . . 3 ⊢ (ω × {1o}) ∈ V |
8 | pnfnre 8063 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
9 | 8 | neli 2461 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
10 | nn0re 9252 | . . . . 5 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
11 | 9, 10 | mto 663 | . . . 4 ⊢ ¬ +∞ ∈ ℕ0 |
12 | fxnn0nninf.g | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
13 | fxnn0nninf.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
14 | 12, 13 | fnn0nninf 10512 | . . . . . 6 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
15 | 14 | fdmi 5412 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐺) = ℕ0 |
16 | 15 | eleq2i 2260 | . . . 4 ⊢ (+∞ ∈ dom (𝐹 ∘ ◡𝐺) ↔ +∞ ∈ ℕ0) |
17 | 11, 16 | mtbir 672 | . . 3 ⊢ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺) |
18 | fsnunfv 5760 | . . 3 ⊢ ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o})) | |
19 | 3, 7, 17, 18 | mp3an 1348 | . 2 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o}) |
20 | fconstmpt 4707 | . 2 ⊢ (ω × {1o}) = (𝑥 ∈ ω ↦ 1o) | |
21 | 2, 19, 20 | 3eqtri 2218 | 1 ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 ∅c0 3447 ifcif 3558 {csn 3619 〈cop 3622 ↦ cmpt 4091 ωcom 4623 × cxp 4658 ◡ccnv 4659 dom cdm 4660 ∘ ccom 4664 ‘cfv 5255 (class class class)co 5919 freccfrec 6445 1oc1o 6464 ℕ∞xnninf 7180 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 +∞cpnf 8053 ℕ0cn0 9243 ℕ0*cxnn0 9306 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-1o 6471 df-2o 6472 df-map 6706 df-nninf 7181 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-xnn0 9307 df-z 9321 df-uz 9596 |
This theorem is referenced by: nninfctlemfo 12180 |
Copyright terms: Public domain | W3C validator |