| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inftonninf | GIF version | ||
| Description: The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| inftonninf | ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i | . . 3 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 2 | 1 | fveq1i 5584 | . 2 ⊢ (𝐼‘+∞) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) |
| 3 | pnf0xnn0 9372 | . . 3 ⊢ +∞ ∈ ℕ0* | |
| 4 | omex 4645 | . . . 4 ⊢ ω ∈ V | |
| 5 | 1oex 6517 | . . . . 5 ⊢ 1o ∈ V | |
| 6 | 5 | snex 4233 | . . . 4 ⊢ {1o} ∈ V |
| 7 | 4, 6 | xpex 4794 | . . 3 ⊢ (ω × {1o}) ∈ V |
| 8 | pnfnre 8121 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
| 9 | 8 | neli 2474 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
| 10 | nn0re 9311 | . . . . 5 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 11 | 9, 10 | mto 664 | . . . 4 ⊢ ¬ +∞ ∈ ℕ0 |
| 12 | fxnn0nninf.g | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 13 | fxnn0nninf.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 14 | 12, 13 | fnn0nninf 10590 | . . . . . 6 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| 15 | 14 | fdmi 5439 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐺) = ℕ0 |
| 16 | 15 | eleq2i 2273 | . . . 4 ⊢ (+∞ ∈ dom (𝐹 ∘ ◡𝐺) ↔ +∞ ∈ ℕ0) |
| 17 | 11, 16 | mtbir 673 | . . 3 ⊢ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺) |
| 18 | fsnunfv 5792 | . . 3 ⊢ ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o})) | |
| 19 | 3, 7, 17, 18 | mp3an 1350 | . 2 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o}) |
| 20 | fconstmpt 4726 | . 2 ⊢ (ω × {1o}) = (𝑥 ∈ ω ↦ 1o) | |
| 21 | 2, 19, 20 | 3eqtri 2231 | 1 ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3165 ∅c0 3461 ifcif 3572 {csn 3634 〈cop 3637 ↦ cmpt 4109 ωcom 4642 × cxp 4677 ◡ccnv 4678 dom cdm 4679 ∘ ccom 4683 ‘cfv 5276 (class class class)co 5951 freccfrec 6483 1oc1o 6502 ℕ∞xnninf 7228 ℝcr 7931 0cc0 7932 1c1 7933 + caddc 7935 +∞cpnf 8111 ℕ0cn0 9302 ℕ0*cxnn0 9365 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-recs 6398 df-frec 6484 df-1o 6509 df-2o 6510 df-map 6744 df-nninf 7229 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-xnn0 9366 df-z 9380 df-uz 9656 |
| This theorem is referenced by: nninfctlemfo 12405 |
| Copyright terms: Public domain | W3C validator |