![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inftonninf | GIF version |
Description: The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
Ref | Expression |
---|---|
inftonninf | ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.i | . . 3 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
2 | 1 | fveq1i 5528 | . 2 ⊢ (𝐼‘+∞) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) |
3 | pnf0xnn0 9260 | . . 3 ⊢ +∞ ∈ ℕ0* | |
4 | omex 4604 | . . . 4 ⊢ ω ∈ V | |
5 | 1oex 6439 | . . . . 5 ⊢ 1o ∈ V | |
6 | 5 | snex 4197 | . . . 4 ⊢ {1o} ∈ V |
7 | 4, 6 | xpex 4753 | . . 3 ⊢ (ω × {1o}) ∈ V |
8 | pnfnre 8013 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
9 | 8 | neli 2454 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
10 | nn0re 9199 | . . . . 5 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
11 | 9, 10 | mto 663 | . . . 4 ⊢ ¬ +∞ ∈ ℕ0 |
12 | fxnn0nninf.g | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
13 | fxnn0nninf.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
14 | 12, 13 | fnn0nninf 10451 | . . . . . 6 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
15 | 14 | fdmi 5385 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐺) = ℕ0 |
16 | 15 | eleq2i 2254 | . . . 4 ⊢ (+∞ ∈ dom (𝐹 ∘ ◡𝐺) ↔ +∞ ∈ ℕ0) |
17 | 11, 16 | mtbir 672 | . . 3 ⊢ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺) |
18 | fsnunfv 5730 | . . 3 ⊢ ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹 ∘ ◡𝐺)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o})) | |
19 | 3, 7, 17, 18 | mp3an 1347 | . 2 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘+∞) = (ω × {1o}) |
20 | fconstmpt 4685 | . 2 ⊢ (ω × {1o}) = (𝑥 ∈ ω ↦ 1o) | |
21 | 2, 19, 20 | 3eqtri 2212 | 1 ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ∪ cun 3139 ∅c0 3434 ifcif 3546 {csn 3604 〈cop 3607 ↦ cmpt 4076 ωcom 4601 × cxp 4636 ◡ccnv 4637 dom cdm 4638 ∘ ccom 4642 ‘cfv 5228 (class class class)co 5888 freccfrec 6405 1oc1o 6424 ℕ∞xnninf 7132 ℝcr 7824 0cc0 7825 1c1 7826 + caddc 7828 +∞cpnf 8003 ℕ0cn0 9190 ℕ0*cxnn0 9253 ℤcz 9267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-recs 6320 df-frec 6406 df-1o 6431 df-2o 6432 df-map 6664 df-nninf 7133 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-n0 9191 df-xnn0 9254 df-z 9268 df-uz 9543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |