ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inftonninf GIF version

Theorem inftonninf 10245
Description: The mapping of +∞ into is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
inftonninf (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem inftonninf
StepHypRef Expression
1 fxnn0nninf.i . . 3 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5430 . 2 (𝐼‘+∞) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘+∞)
3 pnf0xnn0 9071 . . 3 +∞ ∈ ℕ0*
4 omex 4515 . . . 4 ω ∈ V
5 1oex 6329 . . . . 5 1o ∈ V
65snex 4117 . . . 4 {1o} ∈ V
74, 6xpex 4662 . . 3 (ω × {1o}) ∈ V
8 pnfnre 7831 . . . . . 6 +∞ ∉ ℝ
98neli 2406 . . . . 5 ¬ +∞ ∈ ℝ
10 nn0re 9010 . . . . 5 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
119, 10mto 652 . . . 4 ¬ +∞ ∈ ℕ0
12 fxnn0nninf.g . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
13 fxnn0nninf.f . . . . . . 7 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
1412, 13fnn0nninf 10241 . . . . . 6 (𝐹𝐺):ℕ0⟶ℕ
1514fdmi 5288 . . . . 5 dom (𝐹𝐺) = ℕ0
1615eleq2i 2207 . . . 4 (+∞ ∈ dom (𝐹𝐺) ↔ +∞ ∈ ℕ0)
1711, 16mtbir 661 . . 3 ¬ +∞ ∈ dom (𝐹𝐺)
18 fsnunfv 5629 . . 3 ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹𝐺)) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘+∞) = (ω × {1o}))
193, 7, 17, 18mp3an 1316 . 2 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘+∞) = (ω × {1o})
20 fconstmpt 4594 . 2 (ω × {1o}) = (𝑥 ∈ ω ↦ 1o)
212, 19, 203eqtri 2165 1 (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1332  wcel 1481  Vcvv 2689  cun 3074  c0 3368  ifcif 3479  {csn 3532  cop 3535  cmpt 3997  ωcom 4512   × cxp 4545  ccnv 4546  dom cdm 4547  ccom 4551  cfv 5131  (class class class)co 5782  freccfrec 6295  1oc1o 6314  xnninf 7013  cr 7643  0cc0 7644  1c1 7645   + caddc 7647  +∞cpnf 7821  0cn0 9001  0*cxnn0 9064  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-xnn0 9065  df-z 9079  df-uz 9351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator