ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inftonninf GIF version

Theorem inftonninf 10672
Description: The mapping of +∞ into is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
inftonninf (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem inftonninf
StepHypRef Expression
1 fxnn0nninf.i . . 3 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5630 . 2 (𝐼‘+∞) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘+∞)
3 pnf0xnn0 9447 . . 3 +∞ ∈ ℕ0*
4 omex 4685 . . . 4 ω ∈ V
5 1oex 6576 . . . . 5 1o ∈ V
65snex 4269 . . . 4 {1o} ∈ V
74, 6xpex 4834 . . 3 (ω × {1o}) ∈ V
8 pnfnre 8196 . . . . . 6 +∞ ∉ ℝ
98neli 2497 . . . . 5 ¬ +∞ ∈ ℝ
10 nn0re 9386 . . . . 5 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
119, 10mto 666 . . . 4 ¬ +∞ ∈ ℕ0
12 fxnn0nninf.g . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
13 fxnn0nninf.f . . . . . . 7 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
1412, 13fnn0nninf 10668 . . . . . 6 (𝐹𝐺):ℕ0⟶ℕ
1514fdmi 5481 . . . . 5 dom (𝐹𝐺) = ℕ0
1615eleq2i 2296 . . . 4 (+∞ ∈ dom (𝐹𝐺) ↔ +∞ ∈ ℕ0)
1711, 16mtbir 675 . . 3 ¬ +∞ ∈ dom (𝐹𝐺)
18 fsnunfv 5844 . . 3 ((+∞ ∈ ℕ0* ∧ (ω × {1o}) ∈ V ∧ ¬ +∞ ∈ dom (𝐹𝐺)) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘+∞) = (ω × {1o}))
193, 7, 17, 18mp3an 1371 . 2 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘+∞) = (ω × {1o})
20 fconstmpt 4766 . 2 (ω × {1o}) = (𝑥 ∈ ω ↦ 1o)
212, 19, 203eqtri 2254 1 (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  c0 3491  ifcif 3602  {csn 3666  cop 3669  cmpt 4145  ωcom 4682   × cxp 4717  ccnv 4718  dom cdm 4719  ccom 4723  cfv 5318  (class class class)co 6007  freccfrec 6542  1oc1o 6561  xnninf 7294  cr 8006  0cc0 8007  1c1 8008   + caddc 8010  +∞cpnf 8186  0cn0 9377  0*cxnn0 9440  cz 9454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-map 6805  df-nninf 7295  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731
This theorem is referenced by:  nninfctlemfo  12569
  Copyright terms: Public domain W3C validator