ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbasss GIF version

Theorem qtopbasss 15108
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
Hypotheses
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
qtopbas.max ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
qtopbas.min ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
Assertion
Ref Expression
qtopbasss ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem qtopbasss
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 10064 . . 3 (,) ∈ V
21imaex 5056 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
3 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
43sseli 3197 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
53sseli 3197 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
64, 5anim12i 338 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
73sseli 3197 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
83sseli 3197 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
97, 8anim12i 338 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
10 iooinsup 11703 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )))
116, 9, 10syl2an 289 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )))
12 qtopbas.max . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
1312rgen2a 2562 . . . . . . . . . 10 𝑥𝑆𝑦𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆
14 preq12 3722 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑣, 𝑧})
15 prcom 3719 . . . . . . . . . . . . . 14 {𝑣, 𝑧} = {𝑧, 𝑣}
1614, 15eqtrdi 2256 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑧, 𝑣})
1716supeq1d 7115 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑧, 𝑣}, ℝ*, < ))
1817eleq1d 2276 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = 𝑧) → (sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆))
1918rspc2gv 2896 . . . . . . . . . 10 ((𝑣𝑆𝑧𝑆) → (∀𝑥𝑆𝑦𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆))
2013, 19mpi 15 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)
2120ancoms 268 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)
22 qtopbas.min . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
2322rgen2a 2562 . . . . . . . . 9 𝑥𝑆𝑦𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆
24 preq12 3722 . . . . . . . . . . . 12 ((𝑥 = 𝑤𝑦 = 𝑢) → {𝑥, 𝑦} = {𝑤, 𝑢})
2524infeq1d 7140 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑤, 𝑢}, ℝ*, < ))
2625eleq1d 2276 . . . . . . . . . 10 ((𝑥 = 𝑤𝑦 = 𝑢) → (inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆))
2726rspc2gv 2896 . . . . . . . . 9 ((𝑤𝑆𝑢𝑆) → (∀𝑥𝑆𝑦𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆))
2823, 27mpi 15 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆)
29 df-ov 5970 . . . . . . . . 9 (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) = ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩)
30 opelxpi 4725 . . . . . . . . . 10 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → ⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆))
31 ioof 10128 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
32 ffun 5448 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3331, 32ax-mp 5 . . . . . . . . . . 11 Fun (,)
34 xpss12 4800 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
353, 3, 34mp2an 426 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
3631fdmi 5453 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtrri 3236 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
38 funfvima2 5840 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆))))
3933, 37, 38mp2an 426 . . . . . . . . . 10 (⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆)))
4030, 39syl 14 . . . . . . . . 9 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆)))
4129, 40eqeltrid 2294 . . . . . . . 8 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4221, 28, 41syl2an 289 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4342an4s 588 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4411, 43eqeltrd 2284 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
4544ralrimivva 2590 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
4645rgen2a 2562 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
47 ffn 5445 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4831, 47ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
49 ineq1 3375 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
5049eleq1d 2276 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5150ralbidv 2508 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5251ralima 5847 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5348, 35, 52mp2an 426 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
54 fveq2 5599 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
55 df-ov 5970 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
5654, 55eqtr4di 2258 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
5756ineq1d 3381 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
5857eleq1d 2276 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5958ralbidv 2508 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
60 ineq2 3376 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
6160eleq1d 2276 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
6261ralima 5847 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
6348, 35, 62mp2an 426 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
64 fveq2 5599 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
65 df-ov 5970 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
6664, 65eqtr4di 2258 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
6766ineq2d 3382 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
6867eleq1d 2276 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
6968ralxp 4839 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7063, 69bitri 184 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7159, 70bitrdi 196 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
7271ralxp 4839 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7353, 72bitri 184 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7446, 73mpbir 146 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
75 fiinbas 14636 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
762, 74, 75mp2an 426 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  cin 3173  wss 3174  𝒫 cpw 3626  {cpr 3644  cop 3646   × cxp 4691  dom cdm 4693  cima 4696  Fun wfun 5284   Fn wfn 5285  wf 5286  cfv 5290  (class class class)co 5967  supcsup 7110  infcinf 7111  cr 7959  *cxr 8141   < clt 8142  (,)cioo 10045  TopBasesctb 14629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-xneg 9929  df-ioo 10049  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-bases 14630
This theorem is referenced by:  qtopbas  15109  retopbas  15110
  Copyright terms: Public domain W3C validator