ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbasss GIF version

Theorem qtopbasss 13062
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
Hypotheses
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
qtopbas.max ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
qtopbas.min ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
Assertion
Ref Expression
qtopbasss ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem qtopbasss
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 9834 . . 3 (,) ∈ V
21imaex 4953 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
3 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
43sseli 3133 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
53sseli 3133 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
64, 5anim12i 336 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
73sseli 3133 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
83sseli 3133 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
97, 8anim12i 336 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
10 iooinsup 11204 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )))
116, 9, 10syl2an 287 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )))
12 qtopbas.max . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
1312rgen2a 2518 . . . . . . . . . 10 𝑥𝑆𝑦𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆
14 preq12 3649 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑣, 𝑧})
15 prcom 3646 . . . . . . . . . . . . . 14 {𝑣, 𝑧} = {𝑧, 𝑣}
1614, 15eqtrdi 2213 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑧, 𝑣})
1716supeq1d 6943 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑧, 𝑣}, ℝ*, < ))
1817eleq1d 2233 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = 𝑧) → (sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆))
1918rspc2gv 2837 . . . . . . . . . 10 ((𝑣𝑆𝑧𝑆) → (∀𝑥𝑆𝑦𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆))
2013, 19mpi 15 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)
2120ancoms 266 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)
22 qtopbas.min . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
2322rgen2a 2518 . . . . . . . . 9 𝑥𝑆𝑦𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆
24 preq12 3649 . . . . . . . . . . . 12 ((𝑥 = 𝑤𝑦 = 𝑢) → {𝑥, 𝑦} = {𝑤, 𝑢})
2524infeq1d 6968 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑤, 𝑢}, ℝ*, < ))
2625eleq1d 2233 . . . . . . . . . 10 ((𝑥 = 𝑤𝑦 = 𝑢) → (inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆))
2726rspc2gv 2837 . . . . . . . . 9 ((𝑤𝑆𝑢𝑆) → (∀𝑥𝑆𝑦𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆))
2823, 27mpi 15 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆)
29 df-ov 5839 . . . . . . . . 9 (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) = ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩)
30 opelxpi 4630 . . . . . . . . . 10 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → ⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆))
31 ioof 9898 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
32 ffun 5334 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3331, 32ax-mp 5 . . . . . . . . . . 11 Fun (,)
34 xpss12 4705 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
353, 3, 34mp2an 423 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
3631fdmi 5339 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtrri 3172 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
38 funfvima2 5711 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆))))
3933, 37, 38mp2an 423 . . . . . . . . . 10 (⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆)))
4030, 39syl 14 . . . . . . . . 9 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆)))
4129, 40eqeltrid 2251 . . . . . . . 8 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4221, 28, 41syl2an 287 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4342an4s 578 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4411, 43eqeltrd 2241 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
4544ralrimivva 2546 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
4645rgen2a 2518 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
47 ffn 5331 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4831, 47ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
49 ineq1 3311 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
5049eleq1d 2233 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5150ralbidv 2464 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5251ralima 5718 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5348, 35, 52mp2an 423 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
54 fveq2 5480 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
55 df-ov 5839 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
5654, 55eqtr4di 2215 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
5756ineq1d 3317 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
5857eleq1d 2233 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5958ralbidv 2464 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
60 ineq2 3312 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
6160eleq1d 2233 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
6261ralima 5718 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
6348, 35, 62mp2an 423 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
64 fveq2 5480 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
65 df-ov 5839 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
6664, 65eqtr4di 2215 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
6766ineq2d 3318 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
6867eleq1d 2233 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
6968ralxp 4741 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7063, 69bitri 183 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7159, 70bitrdi 195 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
7271ralxp 4741 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7353, 72bitri 183 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7446, 73mpbir 145 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
75 fiinbas 12588 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
762, 74, 75mp2an 423 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wral 2442  Vcvv 2721  cin 3110  wss 3111  𝒫 cpw 3553  {cpr 3571  cop 3573   × cxp 4596  dom cdm 4598  cima 4601  Fun wfun 5176   Fn wfn 5177  wf 5178  cfv 5182  (class class class)co 5836  supcsup 6938  infcinf 6939  cr 7743  *cxr 7923   < clt 7924  (,)cioo 9815  TopBasesctb 12581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-xneg 9699  df-ioo 9819  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-bases 12582
This theorem is referenced by:  qtopbas  13063  retopbas  13064
  Copyright terms: Public domain W3C validator