Step | Hyp | Ref
| Expression |
1 | | iooex 9843 |
. . 3
⊢ (,)
∈ V |
2 | 1 | imaex 4959 |
. 2
⊢ ((,)
“ (𝑆 × 𝑆)) ∈ V |
3 | | qtopbas.1 |
. . . . . . . . 9
⊢ 𝑆 ⊆
ℝ* |
4 | 3 | sseli 3138 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ℝ*) |
5 | 3 | sseli 3138 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ*) |
6 | 4, 5 | anim12i 336 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℝ* ∧ 𝑤 ∈
ℝ*)) |
7 | 3 | sseli 3138 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ*) |
8 | 3 | sseli 3138 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝑆 → 𝑢 ∈ ℝ*) |
9 | 7, 8 | anim12i 336 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → (𝑣 ∈ ℝ* ∧ 𝑢 ∈
ℝ*)) |
10 | | iooinsup 11218 |
. . . . . . 7
⊢ (((𝑧 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝑣 ∈ ℝ* ∧ 𝑢 ∈ ℝ*))
→ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, <
))) |
11 | 6, 9, 10 | syl2an 287 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, <
))) |
12 | | qtopbas.max |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) |
13 | 12 | rgen2a 2520 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 |
14 | | preq12 3655 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑣, 𝑧}) |
15 | | prcom 3652 |
. . . . . . . . . . . . . 14
⊢ {𝑣, 𝑧} = {𝑧, 𝑣} |
16 | 14, 15 | eqtrdi 2215 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑧, 𝑣}) |
17 | 16 | supeq1d 6952 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑧, 𝑣}, ℝ*, <
)) |
18 | 17 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑧) → (sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)) |
19 | 18 | rspc2gv 2842 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)) |
20 | 13, 19 | mpi 15 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆) |
21 | 20 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆) |
22 | | qtopbas.min |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) |
23 | 22 | rgen2a 2520 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 |
24 | | preq12 3655 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑢) → {𝑥, 𝑦} = {𝑤, 𝑢}) |
25 | 24 | infeq1d 6977 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑢) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑤, 𝑢}, ℝ*, <
)) |
26 | 25 | eleq1d 2235 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑢) → (inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆)) |
27 | 26 | rspc2gv 2842 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆)) |
28 | 23, 27 | mpi 15 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) |
29 | | df-ov 5845 |
. . . . . . . . 9
⊢
(sup({𝑧, 𝑣}, ℝ*, <
)(,)inf({𝑤, 𝑢}, ℝ*, < ))
= ((,)‘〈sup({𝑧,
𝑣}, ℝ*,
< ), inf({𝑤, 𝑢}, ℝ*, <
)〉) |
30 | | opelxpi 4636 |
. . . . . . . . . 10
⊢
((sup({𝑧, 𝑣}, ℝ*, < )
∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → 〈sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )〉 ∈
(𝑆 × 𝑆)) |
31 | | ioof 9907 |
. . . . . . . . . . . 12
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
32 | | ffun 5340 |
. . . . . . . . . . . 12
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → Fun (,)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Fun
(,) |
34 | | xpss12 4711 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℝ*
∧ 𝑆 ⊆
ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*)) |
35 | 3, 3, 34 | mp2an 423 |
. . . . . . . . . . . 12
⊢ (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*) |
36 | 31 | fdmi 5345 |
. . . . . . . . . . . 12
⊢ dom (,) =
(ℝ* × ℝ*) |
37 | 35, 36 | sseqtrri 3177 |
. . . . . . . . . . 11
⊢ (𝑆 × 𝑆) ⊆ dom (,) |
38 | | funfvima2 5717 |
. . . . . . . . . . 11
⊢ ((Fun (,)
∧ (𝑆 × 𝑆) ⊆ dom (,)) →
(〈sup({𝑧, 𝑣}, ℝ*, < ),
inf({𝑤, 𝑢}, ℝ*, < )〉 ∈
(𝑆 × 𝑆) →
((,)‘〈sup({𝑧,
𝑣}, ℝ*,
< ), inf({𝑤, 𝑢}, ℝ*, <
)〉) ∈ ((,) “ (𝑆 × 𝑆)))) |
39 | 33, 37, 38 | mp2an 423 |
. . . . . . . . . 10
⊢
(〈sup({𝑧, 𝑣}, ℝ*, < ),
inf({𝑤, 𝑢}, ℝ*, < )〉 ∈
(𝑆 × 𝑆) →
((,)‘〈sup({𝑧,
𝑣}, ℝ*,
< ), inf({𝑤, 𝑢}, ℝ*, <
)〉) ∈ ((,) “ (𝑆 × 𝑆))) |
40 | 30, 39 | syl 14 |
. . . . . . . . 9
⊢
((sup({𝑧, 𝑣}, ℝ*, < )
∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) →
((,)‘〈sup({𝑧,
𝑣}, ℝ*,
< ), inf({𝑤, 𝑢}, ℝ*, <
)〉) ∈ ((,) “ (𝑆 × 𝑆))) |
41 | 29, 40 | eqeltrid 2253 |
. . . . . . . 8
⊢
((sup({𝑧, 𝑣}, ℝ*, < )
∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,)
“ (𝑆 × 𝑆))) |
42 | 21, 28, 41 | syl2an 287 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,)
“ (𝑆 × 𝑆))) |
43 | 42 | an4s 578 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,)
“ (𝑆 × 𝑆))) |
44 | 11, 43 | eqeltrd 2243 |
. . . . 5
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
45 | 44 | ralrimivva 2548 |
. . . 4
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
46 | 45 | rgen2a 2520 |
. . 3
⊢
∀𝑧 ∈
𝑆 ∀𝑤 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)) |
47 | | ffn 5337 |
. . . . . 6
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
48 | 31, 47 | ax-mp 5 |
. . . . 5
⊢ (,) Fn
(ℝ* × ℝ*) |
49 | | ineq1 3316 |
. . . . . . . 8
⊢ (𝑥 = ((,)‘𝑡) → (𝑥 ∩ 𝑦) = (((,)‘𝑡) ∩ 𝑦)) |
50 | 49 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑥 = ((,)‘𝑡) → ((𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
51 | 50 | ralbidv 2466 |
. . . . . 6
⊢ (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
52 | 51 | ralima 5724 |
. . . . 5
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
53 | 48, 35, 52 | mp2an 423 |
. . . 4
⊢
(∀𝑥 ∈
((,) “ (𝑆 ×
𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))) |
54 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝑧, 𝑤〉 → ((,)‘𝑡) = ((,)‘〈𝑧, 𝑤〉)) |
55 | | df-ov 5845 |
. . . . . . . . . 10
⊢ (𝑧(,)𝑤) = ((,)‘〈𝑧, 𝑤〉) |
56 | 54, 55 | eqtr4di 2217 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑧, 𝑤〉 → ((,)‘𝑡) = (𝑧(,)𝑤)) |
57 | 56 | ineq1d 3322 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦)) |
58 | 57 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑡 = 〈𝑧, 𝑤〉 → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
59 | 58 | ralbidv 2466 |
. . . . . 6
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
60 | | ineq2 3317 |
. . . . . . . . . 10
⊢ (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡))) |
61 | 60 | eleq1d 2235 |
. . . . . . . . 9
⊢ (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))) |
62 | 61 | ralima 5724 |
. . . . . . . 8
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))) |
63 | 48, 35, 62 | mp2an 423 |
. . . . . . 7
⊢
(∀𝑦 ∈
((,) “ (𝑆 ×
𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))) |
64 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ((,)‘𝑡) = ((,)‘〈𝑣, 𝑢〉)) |
65 | | df-ov 5845 |
. . . . . . . . . . 11
⊢ (𝑣(,)𝑢) = ((,)‘〈𝑣, 𝑢〉) |
66 | 64, 65 | eqtr4di 2217 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ((,)‘𝑡) = (𝑣(,)𝑢)) |
67 | 66 | ineq2d 3323 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢))) |
68 | 67 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑣, 𝑢〉 → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))) |
69 | 68 | ralxp 4747 |
. . . . . . 7
⊢
(∀𝑡 ∈
(𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
70 | 63, 69 | bitri 183 |
. . . . . 6
⊢
(∀𝑦 ∈
((,) “ (𝑆 ×
𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
71 | 59, 70 | bitrdi 195 |
. . . . 5
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))) |
72 | 71 | ralxp 4747 |
. . . 4
⊢
(∀𝑡 ∈
(𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
73 | 53, 72 | bitri 183 |
. . 3
⊢
(∀𝑥 ∈
((,) “ (𝑆 ×
𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
74 | 46, 73 | mpbir 145 |
. 2
⊢
∀𝑥 ∈
((,) “ (𝑆 ×
𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) |
75 | | fiinbas 12687 |
. 2
⊢ ((((,)
“ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases) |
76 | 2, 74, 75 | mp2an 423 |
1
⊢ ((,)
“ (𝑆 × 𝑆)) ∈
TopBases |