ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgqioo GIF version

Theorem tgqioo 12755
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
Assertion
Ref Expression
tgqioo (topGen‘ran (,)) = 𝑄

Proof of Theorem tgqioo
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
2 iooex 9720 . . . 4 (,) ∈ V
32imaex 4902 . . 3 ((,) “ (ℚ × ℚ)) ∈ V
4 imassrn 4900 . . 3 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
5 ioof 9784 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
6 ffn 5280 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
75, 6ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
8 simpll 519 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*)
9 elioo1 9724 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦)))
109biimpa 294 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦))
1110simp1d 994 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*)
1210simp2d 995 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧)
13 qbtwnxr 10066 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑧 ∈ ℝ*𝑥 < 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
148, 11, 12, 13syl3anc 1217 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
15 simplr 520 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*)
1610simp3d 996 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦)
17 qbtwnxr 10066 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧 < 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
1811, 15, 16, 17syl3anc 1217 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
19 reeanv 2603 . . . . . . . . . 10 (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)))
20 df-ov 5785 . . . . . . . . . . . . . 14 (𝑢(,)𝑣) = ((,)‘⟨𝑢, 𝑣⟩)
21 opelxpi 4579 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
22213ad2ant2 1004 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
23 ffun 5283 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
245, 23ax-mp 5 . . . . . . . . . . . . . . . 16 Fun (,)
25 qssre 9449 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ
26 ressxr 7833 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
2725, 26sstri 3111 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℝ*
28 xpss12 4654 . . . . . . . . . . . . . . . . . 18 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2927, 27, 28mp2an 423 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
305fdmi 5288 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
3129, 30sseqtrri 3137 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ⊆ dom (,)
32 funfvima2 5658 . . . . . . . . . . . . . . . 16 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ))))
3324, 31, 32mp2an 423 . . . . . . . . . . . . . . 15 (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3422, 33syl 14 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3520, 34eqeltrid 2227 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)))
36113ad2ant1 1003 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ ℝ*)
37 simp3lr 1054 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 < 𝑧)
38 simp3rl 1055 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 < 𝑣)
39 simp2l 1008 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℚ)
4027, 39sseldi 3100 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℝ*)
41 simp2r 1009 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℚ)
4227, 41sseldi 3100 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℝ*)
43 elioo1 9724 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ*𝑣 ∈ ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4440, 42, 43syl2anc 409 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4536, 37, 38, 44mpbir3and 1165 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣))
4683ad2ant1 1003 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 ∈ ℝ*)
47 simp3ll 1053 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 < 𝑢)
4846, 40, 47xrltled 9615 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥𝑢)
49 iooss1 9729 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑥𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
5046, 48, 49syl2anc 409 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
51153ad2ant1 1003 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑦 ∈ ℝ*)
52 simp3rr 1056 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 < 𝑦)
5342, 51, 52xrltled 9615 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣𝑦)
54 iooss2 9730 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑣𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5551, 53, 54syl2anc 409 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5650, 55sstrd 3112 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))
57 eleq2 2204 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑧𝑤𝑧 ∈ (𝑢(,)𝑣)))
58 sseq1 3125 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))
5957, 58anbi12d 465 . . . . . . . . . . . . . 14 (𝑤 = (𝑢(,)𝑣) → ((𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))))
6059rspcev 2793 . . . . . . . . . . . . 13 (((𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)) ∧ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6135, 45, 56, 60syl12anc 1215 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
62613exp 1181 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))))
6362rexlimdvv 2559 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6419, 63syl5bir 152 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6514, 18, 64mp2and 430 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6665ralrimiva 2508 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
67 qtopbas 12730 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
68 eltg2b 12262 . . . . . . . 8 (((,) “ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6967, 68ax-mp 5 . . . . . . 7 ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
7066, 69sylibr 133 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))))
7170rgen2a 2489 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))
72 ffnov 5883 . . . . 5 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))))
737, 71, 72mpbir2an 927 . . . 4 (,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ)))
74 frn 5289 . . . 4 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ))))
7573, 74ax-mp 5 . . 3 ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))
76 2basgeng 12290 . . 3 ((((,) “ (ℚ × ℚ)) ∈ V ∧ ((,) “ (ℚ × ℚ)) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))) → (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,)))
773, 4, 75, 76mp3an 1316 . 2 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,))
781, 77eqtr2i 2162 1 (topGen‘ran (,)) = 𝑄
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  Vcvv 2689  wss 3076  𝒫 cpw 3515  cop 3535   class class class wbr 3937   × cxp 4545  dom cdm 4547  ran crn 4548  cima 4550  Fun wfun 5125   Fn wfn 5126  wf 5127  cfv 5131  (class class class)co 5782  cr 7643  *cxr 7823   < clt 7824  cle 7825  cq 9438  (,)cioo 9701  topGenctg 12174  TopBasesctb 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-ioo 9705  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-topgen 12180  df-bases 12249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator