| Step | Hyp | Ref
 | Expression | 
| 1 |   | tgqioo.1 | 
. 2
⊢ 𝑄 = (topGen‘((,) “
(ℚ × ℚ))) | 
| 2 |   | iooex 9982 | 
. . . 4
⊢ (,)
∈ V | 
| 3 | 2 | imaex 5024 | 
. . 3
⊢ ((,)
“ (ℚ × ℚ)) ∈ V | 
| 4 |   | imassrn 5020 | 
. . 3
⊢ ((,)
“ (ℚ × ℚ)) ⊆ ran (,) | 
| 5 |   | ioof 10046 | 
. . . . . 6
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ | 
| 6 |   | ffn 5407 | 
. . . . . 6
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) | 
| 7 | 5, 6 | ax-mp 5 | 
. . . . 5
⊢ (,) Fn
(ℝ* × ℝ*) | 
| 8 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*) | 
| 9 |   | elioo1 9986 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦))) | 
| 10 | 9 | biimpa 296 | 
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) | 
| 11 | 10 | simp1d 1011 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*) | 
| 12 | 10 | simp2d 1012 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧) | 
| 13 |   | qbtwnxr 10347 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ*
∧ 𝑧 ∈
ℝ* ∧ 𝑥
< 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧)) | 
| 14 | 8, 11, 12, 13 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧)) | 
| 15 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*) | 
| 16 | 10 | simp3d 1013 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦) | 
| 17 |   | qbtwnxr 10347 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ 𝑧
< 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) | 
| 18 | 11, 15, 16, 17 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) | 
| 19 |   | reeanv 2667 | 
. . . . . . . . . 10
⊢
(∃𝑢 ∈
ℚ ∃𝑣 ∈
ℚ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) | 
| 20 |   | df-ov 5925 | 
. . . . . . . . . . . . . 14
⊢ (𝑢(,)𝑣) = ((,)‘〈𝑢, 𝑣〉) | 
| 21 |   | opelxpi 4695 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) →
〈𝑢, 𝑣〉 ∈ (ℚ ×
ℚ)) | 
| 22 | 21 | 3ad2ant2 1021 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 〈𝑢, 𝑣〉 ∈ (ℚ ×
ℚ)) | 
| 23 |   | ffun 5410 | 
. . . . . . . . . . . . . . . . 17
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → Fun (,)) | 
| 24 | 5, 23 | ax-mp 5 | 
. . . . . . . . . . . . . . . 16
⊢ Fun
(,) | 
| 25 |   | qssre 9704 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ℚ
⊆ ℝ | 
| 26 |   | ressxr 8070 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
⊆ ℝ* | 
| 27 | 25, 26 | sstri 3192 | 
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
⊆ ℝ* | 
| 28 |   | xpss12 4770 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((ℚ
⊆ ℝ* ∧ ℚ ⊆ ℝ*) →
(ℚ × ℚ) ⊆ (ℝ* ×
ℝ*)) | 
| 29 | 27, 27, 28 | mp2an 426 | 
. . . . . . . . . . . . . . . . 17
⊢ (ℚ
× ℚ) ⊆ (ℝ* ×
ℝ*) | 
| 30 | 5 | fdmi 5415 | 
. . . . . . . . . . . . . . . . 17
⊢ dom (,) =
(ℝ* × ℝ*) | 
| 31 | 29, 30 | sseqtrri 3218 | 
. . . . . . . . . . . . . . . 16
⊢ (ℚ
× ℚ) ⊆ dom (,) | 
| 32 |   | funfvima2 5795 | 
. . . . . . . . . . . . . . . 16
⊢ ((Fun (,)
∧ (ℚ × ℚ) ⊆ dom (,)) → (〈𝑢, 𝑣〉 ∈ (ℚ × ℚ)
→ ((,)‘〈𝑢,
𝑣〉) ∈ ((,)
“ (ℚ × ℚ)))) | 
| 33 | 24, 31, 32 | mp2an 426 | 
. . . . . . . . . . . . . . 15
⊢
(〈𝑢, 𝑣〉 ∈ (ℚ ×
ℚ) → ((,)‘〈𝑢, 𝑣〉) ∈ ((,) “ (ℚ ×
ℚ))) | 
| 34 | 22, 33 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → ((,)‘〈𝑢, 𝑣〉) ∈ ((,) “ (ℚ ×
ℚ))) | 
| 35 | 20, 34 | eqeltrid 2283 | 
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ ×
ℚ))) | 
| 36 | 11 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑧 ∈ ℝ*) | 
| 37 |   | simp3lr 1071 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑢 < 𝑧) | 
| 38 |   | simp3rl 1072 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑧 < 𝑣) | 
| 39 |   | simp2l 1025 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑢 ∈ ℚ) | 
| 40 | 27, 39 | sselid 3181 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑢 ∈ ℝ*) | 
| 41 |   | simp2r 1026 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 ∈ ℚ) | 
| 42 | 27, 41 | sselid 3181 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 ∈ ℝ*) | 
| 43 |   | elioo1 9986 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ℝ*
∧ 𝑣 ∈
ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ* ∧ 𝑢 < 𝑧 ∧ 𝑧 < 𝑣))) | 
| 44 | 40, 42, 43 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ* ∧ 𝑢 < 𝑧 ∧ 𝑧 < 𝑣))) | 
| 45 | 36, 37, 38, 44 | mpbir3and 1182 | 
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣)) | 
| 46 | 8 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑥 ∈ ℝ*) | 
| 47 |   | simp3ll 1070 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑥 < 𝑢) | 
| 48 | 46, 40, 47 | xrltled 9874 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑥 ≤ 𝑢) | 
| 49 |   | iooss1 9991 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≤ 𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣)) | 
| 50 | 46, 48, 49 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣)) | 
| 51 | 15 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑦 ∈ ℝ*) | 
| 52 |   | simp3rr 1073 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 < 𝑦) | 
| 53 | 42, 51, 52 | xrltled 9874 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 ≤ 𝑦) | 
| 54 |   | iooss2 9992 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ 𝑣 ≤ 𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦)) | 
| 55 | 51, 53, 54 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦)) | 
| 56 | 50, 55 | sstrd 3193 | 
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)) | 
| 57 |   | eleq2 2260 | 
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑢(,)𝑣) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑢(,)𝑣))) | 
| 58 |   | sseq1 3206 | 
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) | 
| 59 | 57, 58 | anbi12d 473 | 
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑢(,)𝑣) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))) | 
| 60 | 59 | rspcev 2868 | 
. . . . . . . . . . . . 13
⊢ (((𝑢(,)𝑣) ∈ ((,) “ (ℚ ×
ℚ)) ∧ (𝑧 ∈
(𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) | 
| 61 | 35, 45, 56, 60 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) | 
| 62 | 61 | 3exp 1204 | 
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))))) | 
| 63 | 62 | rexlimdvv 2621 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)))) | 
| 64 | 19, 63 | biimtrrid 153 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)))) | 
| 65 | 14, 18, 64 | mp2and 433 | 
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) | 
| 66 | 65 | ralrimiva 2570 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) | 
| 67 |   | qtopbas 14758 | 
. . . . . . . 8
⊢ ((,)
“ (ℚ × ℚ)) ∈ TopBases | 
| 68 |   | eltg2b 14290 | 
. . . . . . . 8
⊢ (((,)
“ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)))) | 
| 69 | 67, 68 | ax-mp 5 | 
. . . . . . 7
⊢ ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) | 
| 70 | 66, 69 | sylibr 134 | 
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ)))) | 
| 71 | 70 | rgen2a 2551 | 
. . . . 5
⊢
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))) | 
| 72 |   | ffnov 6026 | 
. . . . 5
⊢
((,):(ℝ* ×
ℝ*)⟶(topGen‘((,) “ (ℚ ×
ℚ))) ↔ ((,) Fn (ℝ* × ℝ*)
∧ ∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))))) | 
| 73 | 7, 71, 72 | mpbir2an 944 | 
. . . 4
⊢
(,):(ℝ* ×
ℝ*)⟶(topGen‘((,) “ (ℚ ×
ℚ))) | 
| 74 |   | frn 5416 | 
. . . 4
⊢
((,):(ℝ* ×
ℝ*)⟶(topGen‘((,) “ (ℚ ×
ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ ×
ℚ)))) | 
| 75 | 73, 74 | ax-mp 5 | 
. . 3
⊢ ran (,)
⊆ (topGen‘((,) “ (ℚ × ℚ))) | 
| 76 |   | 2basgeng 14318 | 
. . 3
⊢ ((((,)
“ (ℚ × ℚ)) ∈ V ∧ ((,) “ (ℚ ×
ℚ)) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘((,) “
(ℚ × ℚ)))) → (topGen‘((,) “ (ℚ ×
ℚ))) = (topGen‘ran (,))) | 
| 77 | 3, 4, 75, 76 | mp3an 1348 | 
. 2
⊢
(topGen‘((,) “ (ℚ × ℚ))) =
(topGen‘ran (,)) | 
| 78 | 1, 77 | eqtr2i 2218 | 
1
⊢
(topGen‘ran (,)) = 𝑄 |