ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbr GIF version

Theorem fnbr 5378
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 5372 . . 3 (𝐹 Fn 𝐴 → Rel 𝐹)
2 releldm 4913 . . 3 ((Rel 𝐹𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
31, 2sylan 283 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
4 fndm 5373 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54eleq2d 2275 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
65biimpa 296 . 2 ((𝐹 Fn 𝐴𝐵 ∈ dom 𝐹) → 𝐵𝐴)
73, 6syldan 282 1 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176   class class class wbr 4044  dom cdm 4675  Rel wrel 4680   Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-dm 4685  df-fun 5273  df-fn 5274
This theorem is referenced by:  fnop  5379  dffn5im  5624  dffo4  5728  dffo5  5729  tfrlem5  6400
  Copyright terms: Public domain W3C validator