ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbr GIF version

Theorem fnbr 5397
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 5391 . . 3 (𝐹 Fn 𝐴 → Rel 𝐹)
2 releldm 4932 . . 3 ((Rel 𝐹𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
31, 2sylan 283 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
4 fndm 5392 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54eleq2d 2277 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
65biimpa 296 . 2 ((𝐹 Fn 𝐴𝐵 ∈ dom 𝐹) → 𝐵𝐴)
73, 6syldan 282 1 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2178   class class class wbr 4059  dom cdm 4693  Rel wrel 4698   Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-fun 5292  df-fn 5293
This theorem is referenced by:  fnop  5398  dffn5im  5647  dffo4  5751  dffo5  5752  tfrlem5  6423
  Copyright terms: Public domain W3C validator