| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnbr | GIF version | ||
| Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.) |
| Ref | Expression |
|---|---|
| fnbr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5356 | . . 3 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | releldm 4901 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) |
| 4 | fndm 5357 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | eleq2d 2266 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 6 | 5 | biimpa 296 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ dom 𝐹) → 𝐵 ∈ 𝐴) |
| 7 | 3, 6 | syldan 282 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4033 dom cdm 4663 Rel wrel 4668 Fn wfn 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dm 4673 df-fun 5260 df-fn 5261 |
| This theorem is referenced by: fnop 5361 dffn5im 5606 dffo4 5710 dffo5 5711 tfrlem5 6372 |
| Copyright terms: Public domain | W3C validator |