Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9req GIF version

Theorem sylan9req 2142
 Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.)
Hypotheses
Ref Expression
sylan9req.1 (𝜑𝐵 = 𝐴)
sylan9req.2 (𝜓𝐵 = 𝐶)
Assertion
Ref Expression
sylan9req ((𝜑𝜓) → 𝐴 = 𝐶)

Proof of Theorem sylan9req
StepHypRef Expression
1 sylan9req.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2094 . 2 (𝜑𝐴 = 𝐵)
3 sylan9req.2 . 2 (𝜓𝐵 = 𝐶)
42, 3sylan9eq 2141 1 ((𝜑𝜓) → 𝐴 = 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1290 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-4 1446  ax-17 1465  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-cleq 2082 This theorem is referenced by:  xpid11m  4671  fndmu  5128  fodmrnu  5254  funcoeqres  5297  fvunsng  5505  prarloclem5  7120  addlocprlemeq  7153  zdiv  8895  resqrexlemnm  10512  dvdsmulc  11163  cncongrcoprm  11427
 Copyright terms: Public domain W3C validator