| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9req | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2249 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fndmu 5359 fodmrnu 5488 funcoeqres 5535 fvunsng 5756 prarloclem5 7567 addlocprlemeq 7600 zdiv 9414 resqrexlemnm 11183 fprodssdc 11755 dvdsmulc 11984 cncongrcoprm 12274 mgmidmo 13015 lgsmodeq 15286 |
| Copyright terms: Public domain | W3C validator |