![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0fz1 | GIF version |
Description: Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
0fz1 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fn0 5337 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
2 | fndmu 5319 | . . . . 5 ⊢ ((𝐹 Fn (1...𝑁) ∧ 𝐹 Fn ∅) → (1...𝑁) = ∅) | |
3 | 1, 2 | sylan2br 288 | . . . 4 ⊢ ((𝐹 Fn (1...𝑁) ∧ 𝐹 = ∅) → (1...𝑁) = ∅) |
4 | 3 | ex 115 | . . 3 ⊢ (𝐹 Fn (1...𝑁) → (𝐹 = ∅ → (1...𝑁) = ∅)) |
5 | fneq2 5307 | . . . . 5 ⊢ ((1...𝑁) = ∅ → (𝐹 Fn (1...𝑁) ↔ 𝐹 Fn ∅)) | |
6 | 5, 1 | bitrdi 196 | . . . 4 ⊢ ((1...𝑁) = ∅ → (𝐹 Fn (1...𝑁) ↔ 𝐹 = ∅)) |
7 | 6 | biimpcd 159 | . . 3 ⊢ (𝐹 Fn (1...𝑁) → ((1...𝑁) = ∅ → 𝐹 = ∅)) |
8 | 4, 7 | impbid 129 | . 2 ⊢ (𝐹 Fn (1...𝑁) → (𝐹 = ∅ ↔ (1...𝑁) = ∅)) |
9 | fz1n 10046 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) | |
10 | 8, 9 | sylan9bbr 463 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∅c0 3424 Fn wfn 5213 (class class class)co 5877 0cc0 7813 1c1 7814 ℕ0cn0 9178 ...cfz 10010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |