| Step | Hyp | Ref
 | Expression | 
| 1 |   | tfrlemisucfn.3 | 
. . . 4
⊢ (𝜑 → 𝑧 ∈ On) | 
| 2 |   | onsuc 4537 | 
. . . 4
⊢ (𝑧 ∈ On → suc 𝑧 ∈ On) | 
| 3 | 1, 2 | syl 14 | 
. . 3
⊢ (𝜑 → suc 𝑧 ∈ On) | 
| 4 |   | tfrlemisucfn.1 | 
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| 5 |   | tfrlemisucfn.2 | 
. . . 4
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | 
| 6 |   | tfrlemisucfn.4 | 
. . . 4
⊢ (𝜑 → 𝑔 Fn 𝑧) | 
| 7 |   | tfrlemisucfn.5 | 
. . . 4
⊢ (𝜑 → 𝑔 ∈ 𝐴) | 
| 8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6382 | 
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) | 
| 9 |   | vex 2766 | 
. . . . . 6
⊢ 𝑢 ∈ V | 
| 10 | 9 | elsuc 4441 | 
. . . . 5
⊢ (𝑢 ∈ suc 𝑧 ↔ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) | 
| 11 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 12 | 4, 11 | tfrlem3a 6368 | 
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | 
| 13 | 7, 12 | sylib 122 | 
. . . . . . . . 9
⊢ (𝜑 → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | 
| 14 |   | simprrr 540 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) | 
| 15 |   | simprrl 539 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑣) | 
| 16 | 6 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑧) | 
| 17 |   | fndmu 5359 | 
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑣 ∧ 𝑔 Fn 𝑧) → 𝑣 = 𝑧) | 
| 18 | 15, 16, 17 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → 𝑣 = 𝑧) | 
| 19 | 18 | raleqdv 2699 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → (∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | 
| 20 | 14, 19 | mpbid 147 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) | 
| 21 | 13, 20 | rexlimddv 2619 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) | 
| 22 | 21 | r19.21bi 2585 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) | 
| 23 |   | elirrv 4584 | 
. . . . . . . . . . 11
⊢  ¬
𝑢 ∈ 𝑢 | 
| 24 |   | elequ2 2172 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ 𝑢)) | 
| 25 | 23, 24 | mtbiri 676 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → ¬ 𝑢 ∈ 𝑧) | 
| 26 | 25 | necon2ai 2421 | 
. . . . . . . . 9
⊢ (𝑢 ∈ 𝑧 → 𝑧 ≠ 𝑢) | 
| 27 | 26 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑧 ≠ 𝑢) | 
| 28 |   | fvunsng 5756 | 
. . . . . . . 8
⊢ ((𝑢 ∈ V ∧ 𝑧 ≠ 𝑢) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) | 
| 29 | 9, 27, 28 | sylancr 414 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) | 
| 30 |   | eloni 4410 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ On → Ord 𝑧) | 
| 31 | 1, 30 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑧) | 
| 32 |   | ordelss 4414 | 
. . . . . . . . . . 11
⊢ ((Ord
𝑧 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) | 
| 33 | 31, 32 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) | 
| 34 |   | resabs1 4975 | 
. . . . . . . . . 10
⊢ (𝑢 ⊆ 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) | 
| 35 | 33, 34 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) | 
| 36 |   | elirrv 4584 | 
. . . . . . . . . . . 12
⊢  ¬
𝑧 ∈ 𝑧 | 
| 37 |   | fsnunres 5764 | 
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑧 ∧ ¬ 𝑧 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) = 𝑔) | 
| 38 | 6, 36, 37 | sylancl 413 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) = 𝑔) | 
| 39 | 38 | reseq1d 4945 | 
. . . . . . . . . 10
⊢ (𝜑 → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) | 
| 40 | 39 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) | 
| 41 | 35, 40 | eqtr3d 2231 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢) = (𝑔 ↾ 𝑢)) | 
| 42 | 41 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) = (𝐹‘(𝑔 ↾ 𝑢))) | 
| 43 | 22, 29, 42 | 3eqtr4d 2239 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) | 
| 44 | 5 | tfrlem3-2d 6370 | 
. . . . . . . . . 10
⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) | 
| 45 | 44 | simprd 114 | 
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑔) ∈ V) | 
| 46 |   | fndm 5357 | 
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | 
| 47 | 6, 46 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑔 = 𝑧) | 
| 48 | 47 | eleq2d 2266 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ dom 𝑔 ↔ 𝑧 ∈ 𝑧)) | 
| 49 | 36, 48 | mtbiri 676 | 
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑧 ∈ dom 𝑔) | 
| 50 |   | fsnunfv 5763 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ (𝐹‘𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧) = (𝐹‘𝑔)) | 
| 51 | 1, 45, 49, 50 | syl3anc 1249 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧) = (𝐹‘𝑔)) | 
| 52 | 51 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧) = (𝐹‘𝑔)) | 
| 53 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → 𝑢 = 𝑧) | 
| 54 | 53 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧)) | 
| 55 |   | reseq2 4941 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧)) | 
| 56 | 55, 38 | sylan9eqr 2251 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢) = 𝑔) | 
| 57 | 56 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) = (𝐹‘𝑔)) | 
| 58 | 52, 54, 57 | 3eqtr4d 2239 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) | 
| 59 | 43, 58 | jaodan 798 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) | 
| 60 | 10, 59 | sylan2b 287 | 
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) | 
| 61 | 60 | ralrimiva 2570 | 
. . 3
⊢ (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) | 
| 62 |   | fneq2 5347 | 
. . . . 5
⊢ (𝑤 = suc 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ↔ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧)) | 
| 63 |   | raleq 2693 | 
. . . . 5
⊢ (𝑤 = suc 𝑧 → (∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) | 
| 64 | 62, 63 | anbi12d 473 | 
. . . 4
⊢ (𝑤 = suc 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) ↔ ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))))) | 
| 65 | 64 | rspcev 2868 | 
. . 3
⊢ ((suc
𝑧 ∈ On ∧ ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) → ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) | 
| 66 | 3, 8, 61, 65 | syl12anc 1247 | 
. 2
⊢ (𝜑 → ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) | 
| 67 |   | vex 2766 | 
. . . . . 6
⊢ 𝑧 ∈ V | 
| 68 |   | opexg 4261 | 
. . . . . 6
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑔) ∈ V) → 〈𝑧, (𝐹‘𝑔)〉 ∈ V) | 
| 69 | 67, 45, 68 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → 〈𝑧, (𝐹‘𝑔)〉 ∈ V) | 
| 70 |   | snexg 4217 | 
. . . . 5
⊢
(〈𝑧, (𝐹‘𝑔)〉 ∈ V → {〈𝑧, (𝐹‘𝑔)〉} ∈ V) | 
| 71 | 69, 70 | syl 14 | 
. . . 4
⊢ (𝜑 → {〈𝑧, (𝐹‘𝑔)〉} ∈ V) | 
| 72 |   | unexg 4478 | 
. . . 4
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐹‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ V) | 
| 73 | 11, 71, 72 | sylancr 414 | 
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ V) | 
| 74 | 4 | tfrlem3ag 6367 | 
. . 3
⊢ ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))))) | 
| 75 | 73, 74 | syl 14 | 
. 2
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))))) | 
| 76 | 66, 75 | mpbird 167 | 
1
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) |