ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucaccv GIF version

Theorem tfrlemisucaccv 6215
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6222. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemisucfn.3 (𝜑𝑧 ∈ On)
tfrlemisucfn.4 (𝜑𝑔 Fn 𝑧)
tfrlemisucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrlemisucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem tfrlemisucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemisucfn.3 . . . 4 (𝜑𝑧 ∈ On)
2 suceloni 4412 . . . 4 (𝑧 ∈ On → suc 𝑧 ∈ On)
31, 2syl 14 . . 3 (𝜑 → suc 𝑧 ∈ On)
4 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
5 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
6 tfrlemisucfn.4 . . . 4 (𝜑𝑔 Fn 𝑧)
7 tfrlemisucfn.5 . . . 4 (𝜑𝑔𝐴)
84, 5, 1, 6, 7tfrlemisucfn 6214 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
9 vex 2684 . . . . . 6 𝑢 ∈ V
109elsuc 4323 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
11 vex 2684 . . . . . . . . . . 11 𝑔 ∈ V
124, 11tfrlem3a 6200 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
137, 12sylib 121 . . . . . . . . 9 (𝜑 → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
14 simprrr 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
15 simprrl 528 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
166adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
17 fndmu 5219 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
1815, 16, 17syl2anc 408 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑣 = 𝑧)
1918raleqdv 2630 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
2014, 19mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
2113, 20rexlimddv 2552 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
2221r19.21bi 2518 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
23 elirrv 4458 . . . . . . . . . . 11 ¬ 𝑢𝑢
24 elequ2 1691 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
2523, 24mtbiri 664 . . . . . . . . . 10 (𝑧 = 𝑢 → ¬ 𝑢𝑧)
2625necon2ai 2360 . . . . . . . . 9 (𝑢𝑧𝑧𝑢)
2726adantl 275 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
28 fvunsng 5607 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝑔𝑢))
299, 27, 28sylancr 410 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝑔𝑢))
30 eloni 4292 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
311, 30syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
32 ordelss 4296 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
3331, 32sylan 281 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
34 resabs1 4843 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))
3533, 34syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))
36 elirrv 4458 . . . . . . . . . . . 12 ¬ 𝑧𝑧
37 fsnunres 5615 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) = 𝑔)
386, 36, 37sylancl 409 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) = 𝑔)
3938reseq1d 4813 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
4039adantr 274 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
4135, 40eqtr3d 2172 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
4241fveq2d 5418 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) = (𝐹‘(𝑔𝑢)))
4322, 29, 423eqtr4d 2180 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
445tfrlem3-2d 6202 . . . . . . . . . 10 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
4544simprd 113 . . . . . . . . 9 (𝜑 → (𝐹𝑔) ∈ V)
46 fndm 5217 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
476, 46syl 14 . . . . . . . . . . 11 (𝜑 → dom 𝑔 = 𝑧)
4847eleq2d 2207 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ dom 𝑔𝑧𝑧))
4936, 48mtbiri 664 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
50 fsnunfv 5614 . . . . . . . . 9 ((𝑧 ∈ On ∧ (𝐹𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
511, 45, 49, 50syl3anc 1216 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
5251adantr 274 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
53 simpr 109 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
5453fveq2d 5418 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧))
55 reseq2 4809 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧))
5655, 38sylan9eqr 2192 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = 𝑔)
5756fveq2d 5418 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) = (𝐹𝑔))
5852, 54, 573eqtr4d 2180 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
5943, 58jaodan 786 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
6010, 59sylan2b 285 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
6160ralrimiva 2503 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
62 fneq2 5207 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧))
63 raleq 2624 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
6462, 63anbi12d 464 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
6564rspcev 2784 . . 3 ((suc 𝑧 ∈ On ∧ ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
663, 8, 61, 65syl12anc 1214 . 2 (𝜑 → ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
67 vex 2684 . . . . . 6 𝑧 ∈ V
68 opexg 4145 . . . . . 6 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
6967, 45, 68sylancr 410 . . . . 5 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
70 snexg 4103 . . . . 5 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
7169, 70syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
72 unexg 4359 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐹𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
7311, 71, 72sylancr 410 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
744tfrlem3ag 6199 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
7573, 74syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
7666, 75mpbird 166 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  wal 1329   = wceq 1331  wcel 1480  {cab 2123  wne 2306  wral 2414  wrex 2415  Vcvv 2681  cun 3064  wss 3066  {csn 3522  cop 3525  Ord word 4279  Oncon0 4280  suc csuc 4282  dom cdm 4534  cres 4536  Fun wfun 5112   Fn wfn 5113  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  tfrlemibacc  6216  tfrlemi14d  6223
  Copyright terms: Public domain W3C validator