ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucaccv GIF version

Theorem tfrlemisucaccv 6392
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6399. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemisucfn.3 (𝜑𝑧 ∈ On)
tfrlemisucfn.4 (𝜑𝑔 Fn 𝑧)
tfrlemisucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrlemisucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem tfrlemisucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemisucfn.3 . . . 4 (𝜑𝑧 ∈ On)
2 onsuc 4538 . . . 4 (𝑧 ∈ On → suc 𝑧 ∈ On)
31, 2syl 14 . . 3 (𝜑 → suc 𝑧 ∈ On)
4 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
5 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
6 tfrlemisucfn.4 . . . 4 (𝜑𝑔 Fn 𝑧)
7 tfrlemisucfn.5 . . . 4 (𝜑𝑔𝐴)
84, 5, 1, 6, 7tfrlemisucfn 6391 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
9 vex 2766 . . . . . 6 𝑢 ∈ V
109elsuc 4442 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
11 vex 2766 . . . . . . . . . . 11 𝑔 ∈ V
124, 11tfrlem3a 6377 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
137, 12sylib 122 . . . . . . . . 9 (𝜑 → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
14 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
15 simprrl 539 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
166adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
17 fndmu 5362 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
1815, 16, 17syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑣 = 𝑧)
1918raleqdv 2699 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
2014, 19mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
2113, 20rexlimddv 2619 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
2221r19.21bi 2585 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
23 elirrv 4585 . . . . . . . . . . 11 ¬ 𝑢𝑢
24 elequ2 2172 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
2523, 24mtbiri 676 . . . . . . . . . 10 (𝑧 = 𝑢 → ¬ 𝑢𝑧)
2625necon2ai 2421 . . . . . . . . 9 (𝑢𝑧𝑧𝑢)
2726adantl 277 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
28 fvunsng 5759 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝑔𝑢))
299, 27, 28sylancr 414 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝑔𝑢))
30 eloni 4411 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
311, 30syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
32 ordelss 4415 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
3331, 32sylan 283 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
34 resabs1 4976 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))
3533, 34syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))
36 elirrv 4585 . . . . . . . . . . . 12 ¬ 𝑧𝑧
37 fsnunres 5767 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) = 𝑔)
386, 36, 37sylancl 413 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) = 𝑔)
3938reseq1d 4946 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
4039adantr 276 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
4135, 40eqtr3d 2231 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
4241fveq2d 5565 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) = (𝐹‘(𝑔𝑢)))
4322, 29, 423eqtr4d 2239 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
445tfrlem3-2d 6379 . . . . . . . . . 10 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
4544simprd 114 . . . . . . . . 9 (𝜑 → (𝐹𝑔) ∈ V)
46 fndm 5358 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
476, 46syl 14 . . . . . . . . . . 11 (𝜑 → dom 𝑔 = 𝑧)
4847eleq2d 2266 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ dom 𝑔𝑧𝑧))
4936, 48mtbiri 676 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
50 fsnunfv 5766 . . . . . . . . 9 ((𝑧 ∈ On ∧ (𝐹𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
511, 45, 49, 50syl3anc 1249 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
5251adantr 276 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
53 simpr 110 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
5453fveq2d 5565 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧))
55 reseq2 4942 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧))
5655, 38sylan9eqr 2251 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = 𝑔)
5756fveq2d 5565 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) = (𝐹𝑔))
5852, 54, 573eqtr4d 2239 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
5943, 58jaodan 798 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
6010, 59sylan2b 287 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
6160ralrimiva 2570 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
62 fneq2 5348 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧))
63 raleq 2693 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
6462, 63anbi12d 473 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
6564rspcev 2868 . . 3 ((suc 𝑧 ∈ On ∧ ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
663, 8, 61, 65syl12anc 1247 . 2 (𝜑 → ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
67 vex 2766 . . . . . 6 𝑧 ∈ V
68 opexg 4262 . . . . . 6 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
6967, 45, 68sylancr 414 . . . . 5 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
70 snexg 4218 . . . . 5 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
7169, 70syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
72 unexg 4479 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐹𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
7311, 71, 72sylancr 414 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
744tfrlem3ag 6376 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
7573, 74syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
7666, 75mpbird 167 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wne 2367  wral 2475  wrex 2476  Vcvv 2763  cun 3155  wss 3157  {csn 3623  cop 3626  Ord word 4398  Oncon0 4399  suc csuc 4401  dom cdm 4664  cres 4666  Fun wfun 5253   Fn wfn 5254  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by:  tfrlemibacc  6393  tfrlemi14d  6400
  Copyright terms: Public domain W3C validator