Step | Hyp | Ref
| Expression |
1 | | tfrlemisucfn.3 |
. . . 4
⊢ (𝜑 → 𝑧 ∈ On) |
2 | | suceloni 4454 |
. . . 4
⊢ (𝑧 ∈ On → suc 𝑧 ∈ On) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → suc 𝑧 ∈ On) |
4 | | tfrlemisucfn.1 |
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
5 | | tfrlemisucfn.2 |
. . . 4
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
6 | | tfrlemisucfn.4 |
. . . 4
⊢ (𝜑 → 𝑔 Fn 𝑧) |
7 | | tfrlemisucfn.5 |
. . . 4
⊢ (𝜑 → 𝑔 ∈ 𝐴) |
8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6261 |
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
9 | | vex 2712 |
. . . . . 6
⊢ 𝑢 ∈ V |
10 | 9 | elsuc 4361 |
. . . . 5
⊢ (𝑢 ∈ suc 𝑧 ↔ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) |
11 | | vex 2712 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
12 | 4, 11 | tfrlem3a 6247 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
13 | 7, 12 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
14 | | simprrr 530 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) |
15 | | simprrl 529 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑣) |
16 | 6 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑧) |
17 | | fndmu 5264 |
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑣 ∧ 𝑔 Fn 𝑧) → 𝑣 = 𝑧) |
18 | 15, 16, 17 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → 𝑣 = 𝑧) |
19 | 18 | raleqdv 2655 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → (∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
20 | 14, 19 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) |
21 | 13, 20 | rexlimddv 2576 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) |
22 | 21 | r19.21bi 2542 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) |
23 | | elirrv 4501 |
. . . . . . . . . . 11
⊢ ¬
𝑢 ∈ 𝑢 |
24 | | elequ2 2130 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ 𝑢)) |
25 | 23, 24 | mtbiri 665 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → ¬ 𝑢 ∈ 𝑧) |
26 | 25 | necon2ai 2378 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝑧 → 𝑧 ≠ 𝑢) |
27 | 26 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑧 ≠ 𝑢) |
28 | | fvunsng 5654 |
. . . . . . . 8
⊢ ((𝑢 ∈ V ∧ 𝑧 ≠ 𝑢) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) |
29 | 9, 27, 28 | sylancr 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) |
30 | | eloni 4330 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ On → Ord 𝑧) |
31 | 1, 30 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑧) |
32 | | ordelss 4334 |
. . . . . . . . . . 11
⊢ ((Ord
𝑧 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) |
33 | 31, 32 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) |
34 | | resabs1 4888 |
. . . . . . . . . 10
⊢ (𝑢 ⊆ 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) |
35 | 33, 34 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) |
36 | | elirrv 4501 |
. . . . . . . . . . . 12
⊢ ¬
𝑧 ∈ 𝑧 |
37 | | fsnunres 5662 |
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑧 ∧ ¬ 𝑧 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) = 𝑔) |
38 | 6, 36, 37 | sylancl 410 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) = 𝑔) |
39 | 38 | reseq1d 4858 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
40 | 39 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
41 | 35, 40 | eqtr3d 2189 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
42 | 41 | fveq2d 5465 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) = (𝐹‘(𝑔 ↾ 𝑢))) |
43 | 22, 29, 42 | 3eqtr4d 2197 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) |
44 | 5 | tfrlem3-2d 6249 |
. . . . . . . . . 10
⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
45 | 44 | simprd 113 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
46 | | fndm 5262 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
47 | 6, 46 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑔 = 𝑧) |
48 | 47 | eleq2d 2224 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ dom 𝑔 ↔ 𝑧 ∈ 𝑧)) |
49 | 36, 48 | mtbiri 665 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑧 ∈ dom 𝑔) |
50 | | fsnunfv 5661 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ (𝐹‘𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧) = (𝐹‘𝑔)) |
51 | 1, 45, 49, 50 | syl3anc 1217 |
. . . . . . . 8
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧) = (𝐹‘𝑔)) |
52 | 51 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧) = (𝐹‘𝑔)) |
53 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → 𝑢 = 𝑧) |
54 | 53 | fveq2d 5465 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑧)) |
55 | | reseq2 4854 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑧)) |
56 | 55, 38 | sylan9eqr 2209 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢) = 𝑔) |
57 | 56 | fveq2d 5465 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) = (𝐹‘𝑔)) |
58 | 52, 54, 57 | 3eqtr4d 2197 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) |
59 | 43, 58 | jaodan 787 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) |
60 | 10, 59 | sylan2b 285 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) |
61 | 60 | ralrimiva 2527 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) |
62 | | fneq2 5252 |
. . . . 5
⊢ (𝑤 = suc 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ↔ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧)) |
63 | | raleq 2649 |
. . . . 5
⊢ (𝑤 = suc 𝑧 → (∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) |
64 | 62, 63 | anbi12d 465 |
. . . 4
⊢ (𝑤 = suc 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))) ↔ ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))))) |
65 | 64 | rspcev 2813 |
. . 3
⊢ ((suc
𝑧 ∈ On ∧ ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) → ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) |
66 | 3, 8, 61, 65 | syl12anc 1215 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢)))) |
67 | | vex 2712 |
. . . . . 6
⊢ 𝑧 ∈ V |
68 | | opexg 4183 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑔) ∈ V) → 〈𝑧, (𝐹‘𝑔)〉 ∈ V) |
69 | 67, 45, 68 | sylancr 411 |
. . . . 5
⊢ (𝜑 → 〈𝑧, (𝐹‘𝑔)〉 ∈ V) |
70 | | snexg 4140 |
. . . . 5
⊢
(〈𝑧, (𝐹‘𝑔)〉 ∈ V → {〈𝑧, (𝐹‘𝑔)〉} ∈ V) |
71 | 69, 70 | syl 14 |
. . . 4
⊢ (𝜑 → {〈𝑧, (𝐹‘𝑔)〉} ∈ V) |
72 | | unexg 4397 |
. . . 4
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐹‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ V) |
73 | 11, 71, 72 | sylancr 411 |
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ V) |
74 | 4 | tfrlem3ag 6246 |
. . 3
⊢ ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))))) |
75 | 73, 74 | syl 14 |
. 2
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})‘𝑢) = (𝐹‘((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ↾ 𝑢))))) |
76 | 66, 75 | mpbird 166 |
1
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) |