ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab GIF version

Theorem hbab 2195
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
hbab.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbab (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbab
StepHypRef Expression
1 df-clab 2191 . 2 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
2 hbab.1 . . 3 (𝜑 → ∀𝑥𝜑)
32hbsb 1976 . 2 ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)
41, 3hbxfrbi 1494 1 (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370  [wsb 1784  wcel 2175  {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191
This theorem is referenced by:  nfsab  2196
  Copyright terms: Public domain W3C validator