| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| hbab.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbab | ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2194 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 2 | hbab.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 2 | hbsb 1978 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) |
| 4 | 1, 3 | hbxfrbi 1496 | 1 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 [wsb 1786 ∈ wcel 2178 {cab 2193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 |
| This theorem is referenced by: nfsab 2199 |
| Copyright terms: Public domain | W3C validator |