ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab GIF version

Theorem hbab 2130
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
hbab.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbab (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbab
StepHypRef Expression
1 df-clab 2126 . 2 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
2 hbab.1 . . 3 (𝜑 → ∀𝑥𝜑)
32hbsb 1922 . 2 ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)
41, 3hbxfrbi 1448 1 (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1329  wcel 1480  [wsb 1735  {cab 2125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126
This theorem is referenced by:  nfsab  2131
  Copyright terms: Public domain W3C validator