| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbimi | GIF version | ||
| Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| sbimi | ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbimi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | imim2i 12 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓)) | 
| 3 | 1 | anim2i 342 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓)) | 
| 4 | 3 | eximi 1614 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) | 
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | 
| 6 | df-sb 1777 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 7 | df-sb 1777 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbbii 1779 sb6f 1817 hbsb3 1822 sbidm 1865 sbco 1987 sbcocom 1989 sbalyz 2018 hbsb4t 2032 moimv 2111 elsb1 2174 elsb2 2175 oprcl 3832 peano1 4630 peano2 4631 | 
| Copyright terms: Public domain | W3C validator |