| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbimi | GIF version | ||
| Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbimi | ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | imim2i 12 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓)) |
| 3 | 1 | anim2i 342 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓)) |
| 4 | 3 | eximi 1624 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
| 6 | df-sb 1787 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 7 | df-sb 1787 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1516 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: sbbii 1789 sb6f 1827 hbsb3 1832 sbidm 1875 sbco 1997 sbcocom 1999 sbalyz 2028 hbsb4t 2042 moimv 2121 elsb1 2184 elsb2 2185 oprcl 3846 peano1 4647 peano2 4648 |
| Copyright terms: Public domain | W3C validator |