![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbimi | GIF version |
Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sbimi | ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | 1 | imim2i 12 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓)) |
3 | 1 | anim2i 337 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓)) |
4 | 3 | eximi 1562 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
5 | 2, 4 | anim12i 334 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
6 | df-sb 1719 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
7 | df-sb 1719 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
8 | 5, 6, 7 | 3imtr4i 200 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1451 [wsb 1718 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-ial 1497 |
This theorem depends on definitions: df-bi 116 df-sb 1719 |
This theorem is referenced by: sbbii 1721 sb6f 1757 hbsb3 1762 sbidm 1805 sbco 1917 sbcocom 1919 elsb3 1927 elsb4 1928 sbalyz 1950 hbsb4t 1964 moimv 2041 oprcl 3695 peano1 4468 peano2 4469 |
Copyright terms: Public domain | W3C validator |