| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax16ALT | GIF version | ||
| Description: Version of ax16 1827 that does not require ax-10 1519 or ax12 1526 for its proof. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| ax16ALT | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequ12 1785 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 2 | ax-17 1540 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 3 | 2 | hbsb3 1822 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑) | 
| 4 | 1, 3 | ax16i 1872 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: dvelimALT 2029 dvelimfv 2030 | 
| Copyright terms: Public domain | W3C validator |