ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax16ALT GIF version

Theorem ax16ALT 1873
Description: Version of ax16 1827 that does not require ax-10 1519 or ax12 1526 for its proof. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax16ALT (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax16ALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbequ12 1785 . 2 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
2 ax-17 1540 . . 3 (𝜑 → ∀𝑧𝜑)
32hbsb3 1822 . 2 ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑)
41, 3ax16i 1872 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  dvelimALT  2029  dvelimfv  2030
  Copyright terms: Public domain W3C validator