| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexabim | GIF version | ||
| Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexabim | ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2194 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 2 | 1 | exbii 1629 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
| 3 | nfsab1 2196 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 4 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∣ 𝜑} | |
| 5 | eleq1 2269 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
| 6 | 3, 4, 5 | cbvex 1780 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 7 | inteximm 4197 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 8 | 6, 7 | sylbir 135 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| 9 | 2, 8 | sylbir 135 | 1 ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∈ wcel 2177 {cab 2192 Vcvv 2773 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4166 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-ss 3180 df-int 3888 |
| This theorem is referenced by: intexrabim 4201 omex 4645 |
| Copyright terms: Public domain | W3C validator |