ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexabim GIF version

Theorem intexabim 4215
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexabim (∃𝑥𝜑 {𝑥𝜑} ∈ V)

Proof of Theorem intexabim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 abid 2197 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
21exbii 1631 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
3 nfsab1 2199 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
4 nfv 1554 . . . 4 𝑦 𝑥 ∈ {𝑥𝜑}
5 eleq1 2272 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
63, 4, 5cbvex 1782 . . 3 (∃𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∃𝑥 𝑥 ∈ {𝑥𝜑})
7 inteximm 4212 . . 3 (∃𝑦 𝑦 ∈ {𝑥𝜑} → {𝑥𝜑} ∈ V)
86, 7sylbir 135 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} → {𝑥𝜑} ∈ V)
92, 8sylbir 135 1 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1518  wcel 2180  {cab 2195  Vcvv 2779   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-sep 4181
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-int 3903
This theorem is referenced by:  intexrabim  4216  omex  4662
  Copyright terms: Public domain W3C validator