ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexabim GIF version

Theorem intexabim 4185
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexabim (∃𝑥𝜑 {𝑥𝜑} ∈ V)

Proof of Theorem intexabim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 abid 2184 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
21exbii 1619 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
3 nfsab1 2186 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
4 nfv 1542 . . . 4 𝑦 𝑥 ∈ {𝑥𝜑}
5 eleq1 2259 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
63, 4, 5cbvex 1770 . . 3 (∃𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∃𝑥 𝑥 ∈ {𝑥𝜑})
7 inteximm 4182 . . 3 (∃𝑦 𝑦 ∈ {𝑥𝜑} → {𝑥𝜑} ∈ V)
86, 7sylbir 135 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} → {𝑥𝜑} ∈ V)
92, 8sylbir 135 1 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1506  wcel 2167  {cab 2182  Vcvv 2763   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-int 3875
This theorem is referenced by:  intexrabim  4186  omex  4629
  Copyright terms: Public domain W3C validator