![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intexabim | GIF version |
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexabim | ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2165 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | 1 | exbii 1605 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
3 | nfsab1 2167 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∣ 𝜑} | |
5 | eleq1 2240 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
6 | 3, 4, 5 | cbvex 1756 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑}) |
7 | inteximm 4151 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) | |
8 | 6, 7 | sylbir 135 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
9 | 2, 8 | sylbir 135 | 1 ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1492 ∈ wcel 2148 {cab 2163 Vcvv 2739 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-int 3847 |
This theorem is referenced by: intexrabim 4155 omex 4594 |
Copyright terms: Public domain | W3C validator |