| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexabim | GIF version | ||
| Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexabim | ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2217 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 2 | 1 | exbii 1651 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
| 3 | nfsab1 2219 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 4 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∣ 𝜑} | |
| 5 | eleq1 2292 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
| 6 | 3, 4, 5 | cbvex 1802 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 7 | inteximm 4233 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 8 | 6, 7 | sylbir 135 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| 9 | 2, 8 | sylbir 135 | 1 ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 ∈ wcel 2200 {cab 2215 Vcvv 2799 ∩ cint 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 |
| This theorem is referenced by: intexrabim 4237 omex 4685 |
| Copyright terms: Public domain | W3C validator |