Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intexabim | GIF version |
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexabim | ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2153 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | 1 | exbii 1593 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
3 | nfsab1 2155 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∣ 𝜑} | |
5 | eleq1 2229 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
6 | 3, 4, 5 | cbvex 1744 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑}) |
7 | inteximm 4128 | . . 3 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) | |
8 | 6, 7 | sylbir 134 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
9 | 2, 8 | sylbir 134 | 1 ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 ∈ wcel 2136 {cab 2151 Vcvv 2726 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: intexrabim 4132 omex 4570 |
Copyright terms: Public domain | W3C validator |