ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexr GIF version

Theorem intexr 4183
Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem intexr
StepHypRef Expression
1 vprc 4165 . . 3 ¬ V ∈ V
2 inteq 3877 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3888 . . . . 5 ∅ = V
42, 3eqtrdi 2245 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2265 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 676 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2421 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367  Vcvv 2763  c0 3450   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-nul 3451  df-int 3875
This theorem is referenced by:  fival  7036
  Copyright terms: Public domain W3C validator