ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexr GIF version

Theorem intexr 4198
Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem intexr
StepHypRef Expression
1 vprc 4180 . . 3 ¬ V ∈ V
2 inteq 3890 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3901 . . . . 5 ∅ = V
42, 3eqtrdi 2255 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2275 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 677 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2431 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wne 2377  Vcvv 2773  c0 3461   cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3169  df-nul 3462  df-int 3888
This theorem is referenced by:  fival  7079
  Copyright terms: Public domain W3C validator