| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexr | GIF version | ||
| Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexr | ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4180 | . . 3 ⊢ ¬ V ∈ V | |
| 2 | inteq 3890 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 3 | int0 3901 | . . . . 5 ⊢ ∩ ∅ = V | |
| 4 | 2, 3 | eqtrdi 2255 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 5 | 4 | eleq1d 2275 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 6 | 1, 5 | mtbiri 677 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 7 | 6 | necon2ai 2431 | 1 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ∅c0 3461 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3169 df-nul 3462 df-int 3888 |
| This theorem is referenced by: fival 7079 |
| Copyright terms: Public domain | W3C validator |