| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexr | GIF version | ||
| Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexr | ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4216 | . . 3 ⊢ ¬ V ∈ V | |
| 2 | inteq 3926 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 3 | int0 3937 | . . . . 5 ⊢ ∩ ∅ = V | |
| 4 | 2, 3 | eqtrdi 2278 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 5 | 4 | eleq1d 2298 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 6 | 1, 5 | mtbiri 679 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 7 | 6 | necon2ai 2454 | 1 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ∅c0 3491 ∩ cint 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-nul 3492 df-int 3924 |
| This theorem is referenced by: fival 7145 |
| Copyright terms: Public domain | W3C validator |