ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexr GIF version

Theorem intexr 4129
Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem intexr
StepHypRef Expression
1 vprc 4114 . . 3 ¬ V ∈ V
2 inteq 3827 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3838 . . . . 5 ∅ = V
42, 3eqtrdi 2215 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2235 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 665 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2390 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wne 2336  Vcvv 2726  c0 3409   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410  df-int 3825
This theorem is referenced by:  fival  6935
  Copyright terms: Public domain W3C validator