ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq2 GIF version

Theorem isoeq2 5781
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq2 (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵)))

Proof of Theorem isoeq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3991 . . . . 5 (𝑅 = 𝑇 → (𝑥𝑅𝑦𝑥𝑇𝑦))
21bibi1d 232 . . . 4 (𝑅 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
322ralbidv 2494 . . 3 (𝑅 = 𝑇 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
43anbi2d 461 . 2 (𝑅 = 𝑇 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
5 df-isom 5207 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-isom 5207 . 2 (𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
74, 5, 63bitr4g 222 1 (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wral 2448   class class class wbr 3989  1-1-ontowf1o 5197  cfv 5198   Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-ral 2453  df-br 3990  df-isom 5207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator