Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isoeq2 | GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq2 | ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3991 | . . . . 5 ⊢ (𝑅 = 𝑇 → (𝑥𝑅𝑦 ↔ 𝑥𝑇𝑦)) | |
2 | 1 | bibi1d 232 | . . . 4 ⊢ (𝑅 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
3 | 2 | 2ralbidv 2494 | . . 3 ⊢ (𝑅 = 𝑇 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
4 | 3 | anbi2d 461 | . 2 ⊢ (𝑅 = 𝑇 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
5 | df-isom 5207 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-isom 5207 | . 2 ⊢ (𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∀wral 2448 class class class wbr 3989 –1-1-onto→wf1o 5197 ‘cfv 5198 Isom wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-ral 2453 df-br 3990 df-isom 5207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |