| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 2497 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 2497 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: cbvral3v 2744 poeq1 4335 soeq1 4351 isoeq1 5851 isoeq2 5852 isoeq3 5853 fnmpoovd 6282 smoeq 6357 xpf1o 6914 tapeq1 7335 elinp 7558 cauappcvgpr 7746 seq3caopr2 10602 seqcaopr2g 10603 addcn2 11492 mulcn2 11494 sgrp1 13113 ismhm 13163 mhmex 13164 issubm 13174 isnsg 13408 nmznsg 13419 isghm 13449 iscmn 13499 ring1 13691 opprsubrngg 13843 issubrg3 13879 islmod 13923 lmodlema 13924 lsssetm 13988 islssmd 13991 islidlm 14111 ispsmet 14643 ismet 14664 isxmet 14665 addcncntoplem 14881 elcncf 14893 mpodvdsmulf1o 15310 |
| Copyright terms: Public domain | W3C validator |