| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 2506 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 2506 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: cbvral3v 2753 poeq1 4346 soeq1 4362 isoeq1 5870 isoeq2 5871 isoeq3 5872 fnmpoovd 6301 smoeq 6376 xpf1o 6941 tapeq1 7364 elinp 7587 cauappcvgpr 7775 seq3caopr2 10638 seqcaopr2g 10639 addcn2 11621 mulcn2 11623 sgrp1 13243 ismhm 13293 mhmex 13294 issubm 13304 isnsg 13538 nmznsg 13549 isghm 13579 iscmn 13629 ring1 13821 opprsubrngg 13973 issubrg3 14009 islmod 14053 lmodlema 14054 lsssetm 14118 islssmd 14121 islidlm 14241 ispsmet 14795 ismet 14816 isxmet 14817 addcncntoplem 15033 elcncf 15045 mpodvdsmulf1o 15462 |
| Copyright terms: Public domain | W3C validator |