| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 2505 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 2505 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 |
| This theorem is referenced by: cbvral3v 2752 poeq1 4345 soeq1 4361 isoeq1 5869 isoeq2 5870 isoeq3 5871 fnmpoovd 6300 smoeq 6375 xpf1o 6940 tapeq1 7363 elinp 7586 cauappcvgpr 7774 seq3caopr2 10636 seqcaopr2g 10637 addcn2 11592 mulcn2 11594 sgrp1 13214 ismhm 13264 mhmex 13265 issubm 13275 isnsg 13509 nmznsg 13520 isghm 13550 iscmn 13600 ring1 13792 opprsubrngg 13944 issubrg3 13980 islmod 14024 lmodlema 14025 lsssetm 14089 islssmd 14092 islidlm 14212 ispsmet 14766 ismet 14787 isxmet 14788 addcncntoplem 15004 elcncf 15016 mpodvdsmulf1o 15433 |
| Copyright terms: Public domain | W3C validator |