| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 2530 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 2530 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: cbvral3v 2780 poeq1 4390 soeq1 4406 isoeq1 5925 isoeq2 5926 isoeq3 5927 fnmpoovd 6361 smoeq 6436 xpf1o 7005 tapeq1 7438 elinp 7661 cauappcvgpr 7849 seq3caopr2 10715 seqcaopr2g 10716 wrd2ind 11255 addcn2 11821 mulcn2 11823 sgrp1 13444 ismhm 13494 mhmex 13495 issubm 13505 isnsg 13739 nmznsg 13750 isghm 13780 iscmn 13830 ring1 14022 opprsubrngg 14175 issubrg3 14211 islmod 14255 lmodlema 14256 lsssetm 14320 islssmd 14323 islidlm 14443 ispsmet 14997 ismet 15018 isxmet 15019 addcncntoplem 15235 elcncf 15247 mpodvdsmulf1o 15664 |
| Copyright terms: Public domain | W3C validator |