![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 2381 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 2381 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wral 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-ral 2365 |
This theorem is referenced by: cbvral3v 2601 poeq1 4135 soeq1 4151 isoeq1 5594 isoeq2 5595 isoeq3 5596 smoeq 6069 xpf1o 6614 elinp 7094 cauappcvgpr 7282 iseqcaopr2 9972 addcn2 10760 mulcn2 10762 elcncf 11902 |
Copyright terms: Public domain | W3C validator |