ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbidv GIF version

Theorem 2ralbidv 2518
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2ralbidv (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2494 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32ralbidv 2494 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477
This theorem is referenced by:  cbvral3v  2741  poeq1  4331  soeq1  4347  isoeq1  5845  isoeq2  5846  isoeq3  5847  fnmpoovd  6270  smoeq  6345  xpf1o  6902  tapeq1  7314  elinp  7536  cauappcvgpr  7724  seq3caopr2  10567  seqcaopr2g  10568  addcn2  11456  mulcn2  11458  sgrp1  12997  ismhm  13036  mhmex  13037  issubm  13047  isnsg  13275  nmznsg  13286  isghm  13316  iscmn  13366  ring1  13558  opprsubrngg  13710  issubrg3  13746  islmod  13790  lmodlema  13791  lsssetm  13855  islssmd  13858  islidlm  13978  ispsmet  14502  ismet  14523  isxmet  14524  addcncntoplem  14740  elcncf  14752
  Copyright terms: Public domain W3C validator