ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbidv GIF version

Theorem 2ralbidv 2554
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2ralbidv (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2530 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32ralbidv 2530 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513
This theorem is referenced by:  cbvral3v  2780  poeq1  4390  soeq1  4406  isoeq1  5925  isoeq2  5926  isoeq3  5927  fnmpoovd  6361  smoeq  6436  xpf1o  7005  tapeq1  7438  elinp  7661  cauappcvgpr  7849  seq3caopr2  10715  seqcaopr2g  10716  wrd2ind  11255  addcn2  11821  mulcn2  11823  sgrp1  13444  ismhm  13494  mhmex  13495  issubm  13505  isnsg  13739  nmznsg  13750  isghm  13780  iscmn  13830  ring1  14022  opprsubrngg  14175  issubrg3  14211  islmod  14255  lmodlema  14256  lsssetm  14320  islssmd  14323  islidlm  14443  ispsmet  14997  ismet  15018  isxmet  15019  addcncntoplem  15235  elcncf  15247  mpodvdsmulf1o  15664
  Copyright terms: Public domain W3C validator