![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 2494 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 2494 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: cbvral3v 2741 poeq1 4331 soeq1 4347 isoeq1 5845 isoeq2 5846 isoeq3 5847 fnmpoovd 6270 smoeq 6345 xpf1o 6902 tapeq1 7314 elinp 7536 cauappcvgpr 7724 seq3caopr2 10567 seqcaopr2g 10568 addcn2 11456 mulcn2 11458 sgrp1 12997 ismhm 13036 mhmex 13037 issubm 13047 isnsg 13275 nmznsg 13286 isghm 13316 iscmn 13366 ring1 13558 opprsubrngg 13710 issubrg3 13746 islmod 13790 lmodlema 13791 lsssetm 13855 islssmd 13858 islidlm 13978 ispsmet 14502 ismet 14523 isxmet 14524 addcncntoplem 14740 elcncf 14752 |
Copyright terms: Public domain | W3C validator |