| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 2497 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 2497 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: cbvral3v 2744 poeq1 4335 soeq1 4351 isoeq1 5851 isoeq2 5852 isoeq3 5853 fnmpoovd 6282 smoeq 6357 xpf1o 6914 tapeq1 7337 elinp 7560 cauappcvgpr 7748 seq3caopr2 10604 seqcaopr2g 10605 addcn2 11494 mulcn2 11496 sgrp1 13115 ismhm 13165 mhmex 13166 issubm 13176 isnsg 13410 nmznsg 13421 isghm 13451 iscmn 13501 ring1 13693 opprsubrngg 13845 issubrg3 13881 islmod 13925 lmodlema 13926 lsssetm 13990 islssmd 13993 islidlm 14113 ispsmet 14667 ismet 14688 isxmet 14689 addcncntoplem 14905 elcncf 14917 mpodvdsmulf1o 15334 |
| Copyright terms: Public domain | W3C validator |