ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbidv GIF version

Theorem 2ralbidv 2521
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2ralbidv (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2497 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32ralbidv 2497 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  cbvral3v  2744  poeq1  4335  soeq1  4351  isoeq1  5851  isoeq2  5852  isoeq3  5853  fnmpoovd  6282  smoeq  6357  xpf1o  6914  tapeq1  7337  elinp  7560  cauappcvgpr  7748  seq3caopr2  10604  seqcaopr2g  10605  addcn2  11494  mulcn2  11496  sgrp1  13115  ismhm  13165  mhmex  13166  issubm  13176  isnsg  13410  nmznsg  13421  isghm  13451  iscmn  13501  ring1  13693  opprsubrngg  13845  issubrg3  13881  islmod  13925  lmodlema  13926  lsssetm  13990  islssmd  13993  islidlm  14113  ispsmet  14667  ismet  14688  isxmet  14689  addcncntoplem  14905  elcncf  14917  mpodvdsmulf1o  15334
  Copyright terms: Public domain W3C validator