ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq1 GIF version

Theorem isoeq1 5844
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq1 (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))

Proof of Theorem isoeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq1 5488 . . 3 (𝐻 = 𝐺 → (𝐻:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
2 fveq1 5553 . . . . . 6 (𝐻 = 𝐺 → (𝐻𝑥) = (𝐺𝑥))
3 fveq1 5553 . . . . . 6 (𝐻 = 𝐺 → (𝐻𝑦) = (𝐺𝑦))
42, 3breq12d 4042 . . . . 5 (𝐻 = 𝐺 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺𝑥)𝑆(𝐺𝑦)))
54bibi2d 232 . . . 4 (𝐻 = 𝐺 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦))))
652ralbidv 2518 . . 3 (𝐻 = 𝐺 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦))))
71, 6anbi12d 473 . 2 (𝐻 = 𝐺 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐺:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦)))))
8 df-isom 5263 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
9 df-isom 5263 . 2 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐺:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦))))
107, 8, 93bitr4g 223 1 (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wral 2472   class class class wbr 4029  1-1-ontowf1o 5253  cfv 5254   Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by:  isores1  5857  ordiso  7095  infrenegsupex  9659  zfz1isolem1  10911  zfz1iso  10912  infxrnegsupex  11406  relogiso  15008
  Copyright terms: Public domain W3C validator