![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isoeq1 | GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq1 | ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 5489 | . . 3 ⊢ (𝐻 = 𝐺 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
2 | fveq1 5554 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑥) = (𝐺‘𝑥)) | |
3 | fveq1 5554 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑦) = (𝐺‘𝑦)) | |
4 | 2, 3 | breq12d 4043 | . . . . 5 ⊢ (𝐻 = 𝐺 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
5 | 4 | bibi2d 232 | . . . 4 ⊢ (𝐻 = 𝐺 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
6 | 5 | 2ralbidv 2518 | . . 3 ⊢ (𝐻 = 𝐺 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
7 | 1, 6 | anbi12d 473 | . 2 ⊢ (𝐻 = 𝐺 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))))) |
8 | df-isom 5264 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
9 | df-isom 5264 | . 2 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) | |
10 | 7, 8, 9 | 3bitr4g 223 | 1 ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∀wral 2472 class class class wbr 4030 –1-1-onto→wf1o 5254 ‘cfv 5255 Isom wiso 5256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 |
This theorem is referenced by: isores1 5858 ordiso 7097 infrenegsupex 9662 zfz1isolem1 10914 zfz1iso 10915 infxrnegsupex 11409 relogiso 15049 |
Copyright terms: Public domain | W3C validator |