HomeHome Intuitionistic Logic Explorer
Theorem List (p. 59 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5801-5900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremovanraleqv 5801* Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝐵 = 𝑋 → (𝜑𝜓))       (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
 
Theoremimbrov2fvoveq 5802 Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
(𝑋 = 𝑌 → (𝜑𝜓))       (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
 
Theoremnfovd 5803 Deduction version of bound-variable hypothesis builder nfov 5804. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐹)    &   (𝜑𝑥𝐵)       (𝜑𝑥(𝐴𝐹𝐵))
 
Theoremnfov 5804 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
𝑥𝐴    &   𝑥𝐹    &   𝑥𝐵       𝑥(𝐴𝐹𝐵)
 
Theoremoprabidlem 5805* Slight elaboration of exdistrfor 1772. A lemma for oprabid 5806. (Contributed by Jim Kingdon, 15-Jan-2019.)
(∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
 
Theoremoprabid 5806 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Although this theorem would be useful with a distinct variable constraint between 𝑥, 𝑦, and 𝑧, we use ax-bndl 1486 to eliminate that constraint. (Contributed by Mario Carneiro, 20-Mar-2013.)
(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
 
Theoremfnovex 5807 The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
 
Theoremovexg 5808 Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
 
Theoremovprc 5809 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
 
Theoremovprc1 5810 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Rel dom 𝐹       𝐴 ∈ V → (𝐴𝐹𝐵) = ∅)
 
Theoremovprc2 5811 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
 
Theoremcsbov123g 5812 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
(𝐴𝐷𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
 
Theoremcsbov12g 5813* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
 
Theoremcsbov1g 5814* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
 
Theoremcsbov2g 5815* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
 
Theoremrspceov 5816* A frequently used special case of rspc2ev 2804 for operation values. (Contributed by NM, 21-Mar-2007.)
((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
 
Theoremfnotovb 5817 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5466. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
 
Theoremopabbrex 5818* A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))    &   ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)       ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ∈ V)
 
Theorem0neqopab 5819 The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theorembrabvv 5820* If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
(𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
 
Theoremdfoprab2 5821* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
 
Theoremreloprab 5822* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab1 5823 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab2 5824 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab3 5825 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab 5826* Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑       𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremoprabbid 5827* Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑥𝜑    &   𝑦𝜑    &   𝑧𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremoprabbidv 5828* Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremoprabbii 5829* Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremssoprab2 5830 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4200. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
(∀𝑥𝑦𝑧(𝜑𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
 
Theoremssoprab2b 5831 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4201. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
 
Theoremeqoprab2b 5832 Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4204. (Contributed by Mario Carneiro, 4-Jan-2017.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
 
Theoremmpoeq123 5833* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
 
Theoremmpoeq12 5834* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
 
Theoremmpoeq123dva 5835* An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐷)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐸)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = 𝐹)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
 
Theoremmpoeq123dv 5836* An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
 
Theoremmpoeq123i 5837 An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
𝐴 = 𝐷    &   𝐵 = 𝐸    &   𝐶 = 𝐹       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)
 
Theoremmpoeq3dva 5838* Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.)
((𝜑𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))
 
Theoremmpoeq3ia 5839 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpoeq3dv 5840* An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.)
(𝜑𝐶 = 𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))
 
Theoremnfmpo1 5841 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑥(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremnfmpo2 5842 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑦(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremnfmpo 5843* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑧𝐴    &   𝑧𝐵    &   𝑧𝐶       𝑧(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremmpo0 5844 A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
(𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
 
Theoremoprab4 5845* Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 
Theoremcbvoprab1 5846* Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
𝑤𝜑    &   𝑥𝜓    &   (𝑥 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab2 5847* Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑤𝜑    &   𝑦𝜓    &   (𝑦 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab12 5848* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝑤𝜑    &   𝑣𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab12v 5849* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab3 5850* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑    &   𝑧𝜓    &   (𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvoprab3v 5851* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvmpox 5852* Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 5853 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
𝑧𝐵    &   𝑥𝐷    &   𝑧𝐶    &   𝑤𝐶    &   𝑥𝐸    &   𝑦𝐸    &   (𝑥 = 𝑧𝐵 = 𝐷)    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
 
Theoremcbvmpo 5853* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
𝑧𝐶    &   𝑤𝐶    &   𝑥𝐷    &   𝑦𝐷    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
 
Theoremcbvmpov 5854* Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4026, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
(𝑥 = 𝑧𝐶 = 𝐸)    &   (𝑦 = 𝑤𝐸 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
 
Theoremdmoprab 5855* The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}
 
Theoremdmoprabss 5856* The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 
Theoremrnoprab 5857* The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
 
Theoremrnoprab2 5858* The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
 
Theoremreldmoprab 5859* The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremoprabss 5860* Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
 
Theoremeloprabga 5861* The law of concretion for operation class abstraction. Compare elopab 4183. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
 
Theoremeloprabg 5862* The law of concretion for operation class abstraction. Compare elopab 4183. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
 
Theoremssoprab2i 5863* Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremmpov 5864* Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
 
Theoremmpomptx 5865* Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpompt 5866* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpodifsnif 5867 A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
(𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
 
Theoremmposnif 5868 A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
(𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
 
Theoremfconstmpo 5869* Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremresoprab 5870* Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 
Theoremresoprab2 5871* Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
 
Theoremresmpo 5872* Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
 
Theoremfunoprabg 5873* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
(∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
 
Theoremfunoprab 5874* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
∃*𝑧𝜑       Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremfnoprabg 5875* Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
(∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
 
Theoremmpofun 5876* The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       Fun 𝐹
 
Theoremfnoprab 5877* Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
(𝜑 → ∃!𝑧𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremffnov 5878* An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
 
Theoremfovcl 5879 Closure law for an operation. (Contributed by NM, 19-Apr-2007.)
𝐹:(𝑅 × 𝑆)⟶𝐶       ((𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
 
Theoremeqfnov 5880* Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
 
Theoremeqfnov2 5881* Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
 
Theoremfnovim 5882* Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
(𝐹 Fn (𝐴 × 𝐵) → 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
 
Theoremmpo2eqb 5883* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5881. (Contributed by Mario Carneiro, 4-Jan-2017.)
(∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
 
Theoremrnmpo 5884* The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
 
Theoremreldmmpo 5885* The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       Rel dom 𝐹
 
Theoremelrnmpog 5886* Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
 
Theoremelrnmpo 5887* Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
 
Theoremralrnmpo 5888* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   (𝑧 = 𝐶 → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
 
Theoremrexrnmpo 5889* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   (𝑧 = 𝐶 → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
 
Theoremovid 5890* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
 
Theoremovidig 5891* The value of an operation class abstraction. Compare ovidi 5892. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
∃*𝑧𝜑    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       (𝜑 → (𝑥𝐹𝑦) = 𝑧)
 
Theoremovidi 5892* The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
 
Theoremov 5893* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 
Theoremovigg 5894* The value of an operation class abstraction. Compare ovig 5895. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   ∃*𝑧𝜑    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 
Theoremovig 5895* The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 
Theoremovmpt4g 5896* Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5507.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
 
Theoremovmpos 5897* Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
 
Theoremov2gf 5898* The value of an operation class abstraction. A version of ovmpog 5908 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐺    &   𝑦𝑆    &   (𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodxf 5899* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐿)    &   (𝜑𝑆𝑋)    &   𝑥𝜑    &   𝑦𝜑    &   𝑦𝐴    &   𝑥𝐵    &   𝑥𝑆    &   𝑦𝑆       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodx 5900* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐿)    &   (𝜑𝑆𝑋)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13414
  Copyright terms: Public domain < Previous  Next >