| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-isom | GIF version | ||
| Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | cS | . . 3 class 𝑆 | |
| 5 | cH | . . 3 class 𝐻 | |
| 6 | 1, 2, 3, 4, 5 | wiso 5318 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| 7 | 1, 2, 5 | wf1o 5316 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
| 8 | vx | . . . . . . . 8 setvar 𝑥 | |
| 9 | 8 | cv 1394 | . . . . . . 7 class 𝑥 |
| 10 | vy | . . . . . . . 8 setvar 𝑦 | |
| 11 | 10 | cv 1394 | . . . . . . 7 class 𝑦 |
| 12 | 9, 11, 3 | wbr 4082 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 13 | 9, 5 | cfv 5317 | . . . . . . 7 class (𝐻‘𝑥) |
| 14 | 11, 5 | cfv 5317 | . . . . . . 7 class (𝐻‘𝑦) |
| 15 | 13, 14, 4 | wbr 4082 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
| 16 | 12, 15 | wb 105 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 17 | 16, 10, 1 | wral 2508 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 18 | 17, 8, 1 | wral 2508 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 19 | 7, 18 | wa 104 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 20 | 6, 19 | wb 105 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Colors of variables: wff set class |
| This definition is referenced by: isoeq1 5924 isoeq2 5925 isoeq3 5926 isoeq4 5927 isoeq5 5928 nfiso 5929 isof1o 5930 isorel 5931 isoid 5933 isocnv 5934 isocnv2 5935 isores2 5936 isores3 5938 isotr 5939 iso0 5940 isoini2 5942 f1oiso 5949 negiso 9098 frec2uzisod 10624 zfz1isolem1 11057 xrnegiso 11768 reefiso 15445 logltb 15542 |
| Copyright terms: Public domain | W3C validator |