![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-isom | GIF version |
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵." Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | cS | . . 3 class 𝑆 | |
5 | cH | . . 3 class 𝐻 | |
6 | 1, 2, 3, 4, 5 | wiso 5080 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
7 | 1, 2, 5 | wf1o 5078 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
8 | vx | . . . . . . . 8 setvar 𝑥 | |
9 | 8 | cv 1311 | . . . . . . 7 class 𝑥 |
10 | vy | . . . . . . . 8 setvar 𝑦 | |
11 | 10 | cv 1311 | . . . . . . 7 class 𝑦 |
12 | 9, 11, 3 | wbr 3893 | . . . . . 6 wff 𝑥𝑅𝑦 |
13 | 9, 5 | cfv 5079 | . . . . . . 7 class (𝐻‘𝑥) |
14 | 11, 5 | cfv 5079 | . . . . . . 7 class (𝐻‘𝑦) |
15 | 13, 14, 4 | wbr 3893 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
16 | 12, 15 | wb 104 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
17 | 16, 10, 1 | wral 2388 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
18 | 17, 8, 1 | wral 2388 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
19 | 7, 18 | wa 103 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 6, 19 | wb 104 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Colors of variables: wff set class |
This definition is referenced by: isoeq1 5654 isoeq2 5655 isoeq3 5656 isoeq4 5657 isoeq5 5658 nfiso 5659 isof1o 5660 isorel 5661 isoid 5663 isocnv 5664 isocnv2 5665 isores2 5666 isores3 5668 isotr 5669 iso0 5670 isoini2 5672 f1oiso 5679 negiso 8617 frec2uzisod 10067 zfz1isolem1 10470 xrnegiso 10917 |
Copyright terms: Public domain | W3C validator |