| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-isom | GIF version | ||
| Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | cS | . . 3 class 𝑆 | |
| 5 | cH | . . 3 class 𝐻 | |
| 6 | 1, 2, 3, 4, 5 | wiso 5280 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| 7 | 1, 2, 5 | wf1o 5278 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
| 8 | vx | . . . . . . . 8 setvar 𝑥 | |
| 9 | 8 | cv 1372 | . . . . . . 7 class 𝑥 |
| 10 | vy | . . . . . . . 8 setvar 𝑦 | |
| 11 | 10 | cv 1372 | . . . . . . 7 class 𝑦 |
| 12 | 9, 11, 3 | wbr 4050 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 13 | 9, 5 | cfv 5279 | . . . . . . 7 class (𝐻‘𝑥) |
| 14 | 11, 5 | cfv 5279 | . . . . . . 7 class (𝐻‘𝑦) |
| 15 | 13, 14, 4 | wbr 4050 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
| 16 | 12, 15 | wb 105 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 17 | 16, 10, 1 | wral 2485 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 18 | 17, 8, 1 | wral 2485 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 19 | 7, 18 | wa 104 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 20 | 6, 19 | wb 105 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Colors of variables: wff set class |
| This definition is referenced by: isoeq1 5882 isoeq2 5883 isoeq3 5884 isoeq4 5885 isoeq5 5886 nfiso 5887 isof1o 5888 isorel 5889 isoid 5891 isocnv 5892 isocnv2 5893 isores2 5894 isores3 5896 isotr 5897 iso0 5898 isoini2 5900 f1oiso 5907 negiso 9043 frec2uzisod 10569 zfz1isolem1 11002 xrnegiso 11643 reefiso 15319 logltb 15416 |
| Copyright terms: Public domain | W3C validator |