ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-isom GIF version

Definition df-isom 5196
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
4 cS . . 3 class 𝑆
5 cH . . 3 class 𝐻
61, 2, 3, 4, 5wiso 5188 . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
71, 2, 5wf1o 5186 . . 3 wff 𝐻:𝐴1-1-onto𝐵
8 vx . . . . . . . 8 setvar 𝑥
98cv 1342 . . . . . . 7 class 𝑥
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1342 . . . . . . 7 class 𝑦
129, 11, 3wbr 3981 . . . . . 6 wff 𝑥𝑅𝑦
139, 5cfv 5187 . . . . . . 7 class (𝐻𝑥)
1411, 5cfv 5187 . . . . . . 7 class (𝐻𝑦)
1513, 14, 4wbr 3981 . . . . . 6 wff (𝐻𝑥)𝑆(𝐻𝑦)
1612, 15wb 104 . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1716, 10, 1wral 2443 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1817, 8, 1wral 2443 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
197, 18wa 103 . 2 wff (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
206, 19wb 104 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Colors of variables: wff set class
This definition is referenced by:  isoeq1  5768  isoeq2  5769  isoeq3  5770  isoeq4  5771  isoeq5  5772  nfiso  5773  isof1o  5774  isorel  5775  isoid  5777  isocnv  5778  isocnv2  5779  isores2  5780  isores3  5782  isotr  5783  iso0  5784  isoini2  5786  f1oiso  5793  negiso  8846  frec2uzisod  10338  zfz1isolem1  10749  xrnegiso  11199  reefiso  13298  logltb  13395
  Copyright terms: Public domain W3C validator