| Step | Hyp | Ref
 | Expression | 
| 1 |   | eldm2g 4862 | 
. . . 4
⊢ (𝐹 ∈ dom ⇝ →
(𝐹 ∈ dom ⇝
↔ ∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ )) | 
| 2 | 1 | ibi 176 | 
. . 3
⊢ (𝐹 ∈ dom ⇝ →
∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ ) | 
| 3 |   | df-br 4034 | 
. . . . 5
⊢ (𝐹 ⇝ 𝑦 ↔ 〈𝐹, 𝑦〉 ∈ ⇝ ) | 
| 4 |   | climcau.1 | 
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 5 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) | 
| 6 |   | rphalfcl 9756 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) | 
| 7 | 6 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ+) | 
| 8 |   | eqidd 2197 | 
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 9 |   | simplr 528 | 
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹 ⇝ 𝑦) | 
| 10 | 4, 5, 7, 8, 9 | climi 11452 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) | 
| 11 |   | eluzelz 9610 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | 
| 12 |   | uzid 9615 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) | 
| 13 | 11, 12 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ (ℤ≥‘𝑗)) | 
| 14 | 13, 4 | eleq2s 2291 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) | 
| 15 | 14 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) | 
| 16 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | 
| 17 | 16 | eleq1d 2265 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) | 
| 18 | 16 | oveq1d 5937 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) − 𝑦) = ((𝐹‘𝑗) − 𝑦)) | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (abs‘((𝐹‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑗) − 𝑦))) | 
| 20 | 19 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) | 
| 21 | 17, 20 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) | 
| 22 | 21 | rspcv 2864 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) | 
| 23 | 15, 22 | syl 14 | 
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) | 
| 24 |   | rpre 9735 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 25 | 24 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑥 ∈ ℝ) | 
| 26 |   | simpllr 534 | 
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝐹 ⇝ 𝑦) | 
| 27 |   | climcl 11447 | 
. . . . . . . . . . . 12
⊢ (𝐹 ⇝ 𝑦 → 𝑦 ∈ ℂ) | 
| 28 | 26, 27 | syl 14 | 
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑦 ∈ ℂ) | 
| 29 |   | simprl 529 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹‘𝑘) ∈ ℂ) | 
| 30 |   | simplrl 535 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹‘𝑗) ∈ ℂ) | 
| 31 |   | simpllr 534 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ) | 
| 32 |   | simplll 533 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ) | 
| 33 |   | simprr 531 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) | 
| 34 | 31, 30 | abssubd 11358 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − 𝑦))) | 
| 35 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) | 
| 36 | 34, 35 | eqbrtrd 4055 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹‘𝑗))) < (𝑥 / 2)) | 
| 37 | 29, 30, 31, 32, 33, 36 | abs3lemd 11366 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | 
| 38 | 37 | ex 115 | 
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 39 | 38 | ralimdv 2565 | 
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 40 | 39 | ex 115 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | 
| 41 | 40 | com23 78 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | 
| 42 | 25, 28, 41 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | 
| 43 | 23, 42 | mpdd 41 | 
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 44 | 43 | reximdva 2599 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 45 | 10, 44 | mpd 13 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | 
| 46 | 45 | ralrimiva 2570 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | 
| 47 | 46 | ex 115 | 
. . . . 5
⊢ (𝑀 ∈ ℤ → (𝐹 ⇝ 𝑦 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 48 | 3, 47 | biimtrrid 153 | 
. . . 4
⊢ (𝑀 ∈ ℤ →
(〈𝐹, 𝑦〉 ∈ ⇝ →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 49 | 48 | exlimdv 1833 | 
. . 3
⊢ (𝑀 ∈ ℤ →
(∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 50 | 2, 49 | syl5 32 | 
. 2
⊢ (𝑀 ∈ ℤ → (𝐹 ∈ dom ⇝ →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 51 | 50 | imp 124 | 
1
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |