Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zindd GIF version

Theorem zindd 9222
 Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1 (𝑥 = 0 → (𝜑𝜓))
zindd.2 (𝑥 = 𝑦 → (𝜑𝜒))
zindd.3 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
zindd.4 (𝑥 = -𝑦 → (𝜑𝜃))
zindd.5 (𝑥 = 𝐴 → (𝜑𝜂))
zindd.6 (𝜁𝜓)
zindd.7 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
zindd.8 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
Assertion
Ref Expression
zindd (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜂,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥   𝑥,𝑦,𝜁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 9138 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
2 elznn0nn 9121 . . . . . . 7 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
31, 2sylib 121 . . . . . 6 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
4 simpr 109 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ)
54orim2i 751 . . . . . 6 ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
63, 5syl 14 . . . . 5 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
7 zcn 9112 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
87negnegd 8117 . . . . . . 7 (𝑦 ∈ ℤ → --𝑦 = 𝑦)
98eleq1d 2210 . . . . . 6 (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ))
109orbi2d 780 . . . . 5 (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0𝑦 ∈ ℕ)))
116, 10mpbid 146 . . . 4 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0𝑦 ∈ ℕ))
12 zindd.1 . . . . . . . 8 (𝑥 = 0 → (𝜑𝜓))
1312imbi2d 229 . . . . . . 7 (𝑥 = 0 → ((𝜁𝜑) ↔ (𝜁𝜓)))
14 zindd.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1514imbi2d 229 . . . . . . 7 (𝑥 = 𝑦 → ((𝜁𝜑) ↔ (𝜁𝜒)))
16 zindd.3 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
1716imbi2d 229 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝜁𝜑) ↔ (𝜁𝜏)))
18 zindd.4 . . . . . . . 8 (𝑥 = -𝑦 → (𝜑𝜃))
1918imbi2d 229 . . . . . . 7 (𝑥 = -𝑦 → ((𝜁𝜑) ↔ (𝜁𝜃)))
20 zindd.6 . . . . . . 7 (𝜁𝜓)
21 zindd.7 . . . . . . . . 9 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
2221com12 30 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁 → (𝜒𝜏)))
2322a2d 26 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝜁𝜒) → (𝜁𝜏)))
2413, 15, 17, 19, 20, 23nn0ind 9218 . . . . . 6 (-𝑦 ∈ ℕ0 → (𝜁𝜃))
2524com12 30 . . . . 5 (𝜁 → (-𝑦 ∈ ℕ0𝜃))
26 nnnn0 9037 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
2713, 15, 17, 15, 20, 23nn0ind 9218 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁𝜒))
2826, 27syl 14 . . . . . . 7 (𝑦 ∈ ℕ → (𝜁𝜒))
2928com12 30 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → 𝜒))
30 zindd.8 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
3129, 30mpdd 41 . . . . 5 (𝜁 → (𝑦 ∈ ℕ → 𝜃))
3225, 31jaod 707 . . . 4 (𝜁 → ((-𝑦 ∈ ℕ0𝑦 ∈ ℕ) → 𝜃))
3311, 32syl5 32 . . 3 (𝜁 → (𝑦 ∈ ℤ → 𝜃))
3433ralrimiv 2509 . 2 (𝜁 → ∀𝑦 ∈ ℤ 𝜃)
35 znegcl 9138 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
36 negeq 8008 . . . . . . . . 9 (𝑦 = -𝑥 → -𝑦 = --𝑥)
37 zcn 9112 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3837negnegd 8117 . . . . . . . . 9 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
3936, 38sylan9eqr 2196 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥)
4039eqcomd 2147 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
4140, 18syl 14 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜃))
4241bicomd 140 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃𝜑))
4335, 42rspcdv 2798 . . . 4 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃𝜑))
4443com12 30 . . 3 (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑))
4544ralrimiv 2509 . 2 (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑)
46 zindd.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜂))
4746rspccv 2792 . 2 (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂))
4834, 45, 473syl 17 1 (𝜁 → (𝐴 ∈ ℤ → 𝜂))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   = wceq 1332   ∈ wcel 2112  ∀wral 2418  (class class class)co 5786  ℝcr 7672  0cc0 7673  1c1 7674   + caddc 7676  -cneg 7987  ℕcn 8773  ℕ0cn0 9030  ℤcz 9107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-addcom 7773  ax-addass 7775  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-0id 7781  ax-rnegex 7782  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-ltadd 7789 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rab 2427  df-v 2693  df-sbc 2916  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-br 3940  df-opab 4000  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-iota 5100  df-fun 5137  df-fv 5143  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-inn 8774  df-n0 9031  df-z 9108 This theorem is referenced by:  efexp  11461
 Copyright terms: Public domain W3C validator