Proof of Theorem zindd
Step | Hyp | Ref
| Expression |
1 | | znegcl 9222 |
. . . . . . 7
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) |
2 | | elznn0nn 9205 |
. . . . . . 7
⊢ (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨
(-𝑦 ∈ ℝ ∧
--𝑦 ∈
ℕ))) |
3 | 1, 2 | sylib 121 |
. . . . . 6
⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨
(-𝑦 ∈ ℝ ∧
--𝑦 ∈
ℕ))) |
4 | | simpr 109 |
. . . . . . 7
⊢ ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈
ℕ) |
5 | 4 | orim2i 751 |
. . . . . 6
⊢ ((-𝑦 ∈ ℕ0 ∨
(-𝑦 ∈ ℝ ∧
--𝑦 ∈ ℕ)) →
(-𝑦 ∈
ℕ0 ∨ --𝑦 ∈ ℕ)) |
6 | 3, 5 | syl 14 |
. . . . 5
⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨
--𝑦 ∈
ℕ)) |
7 | | zcn 9196 |
. . . . . . . 8
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
8 | 7 | negnegd 8200 |
. . . . . . 7
⊢ (𝑦 ∈ ℤ → --𝑦 = 𝑦) |
9 | 8 | eleq1d 2235 |
. . . . . 6
⊢ (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈
ℕ)) |
10 | 9 | orbi2d 780 |
. . . . 5
⊢ (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨
--𝑦 ∈ ℕ) ↔
(-𝑦 ∈
ℕ0 ∨ 𝑦
∈ ℕ))) |
11 | 6, 10 | mpbid 146 |
. . . 4
⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨
𝑦 ∈
ℕ)) |
12 | | zindd.1 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
13 | 12 | imbi2d 229 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜓))) |
14 | | zindd.2 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
15 | 14 | imbi2d 229 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜒))) |
16 | | zindd.3 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) |
17 | 16 | imbi2d 229 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜏))) |
18 | | zindd.4 |
. . . . . . . 8
⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) |
19 | 18 | imbi2d 229 |
. . . . . . 7
⊢ (𝑥 = -𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜃))) |
20 | | zindd.6 |
. . . . . . 7
⊢ (𝜁 → 𝜓) |
21 | | zindd.7 |
. . . . . . . . 9
⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) |
22 | 21 | com12 30 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ (𝜁 → (𝜒 → 𝜏))) |
23 | 22 | a2d 26 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ ((𝜁 → 𝜒) → (𝜁 → 𝜏))) |
24 | 13, 15, 17, 19, 20, 23 | nn0ind 9305 |
. . . . . 6
⊢ (-𝑦 ∈ ℕ0
→ (𝜁 → 𝜃)) |
25 | 24 | com12 30 |
. . . . 5
⊢ (𝜁 → (-𝑦 ∈ ℕ0 → 𝜃)) |
26 | | nnnn0 9121 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
27 | 13, 15, 17, 15, 20, 23 | nn0ind 9305 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ (𝜁 → 𝜒)) |
28 | 26, 27 | syl 14 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (𝜁 → 𝜒)) |
29 | 28 | com12 30 |
. . . . . 6
⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜒)) |
30 | | zindd.8 |
. . . . . 6
⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) |
31 | 29, 30 | mpdd 41 |
. . . . 5
⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜃)) |
32 | 25, 31 | jaod 707 |
. . . 4
⊢ (𝜁 → ((-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ) → 𝜃)) |
33 | 11, 32 | syl5 32 |
. . 3
⊢ (𝜁 → (𝑦 ∈ ℤ → 𝜃)) |
34 | 33 | ralrimiv 2538 |
. 2
⊢ (𝜁 → ∀𝑦 ∈ ℤ 𝜃) |
35 | | znegcl 9222 |
. . . . 5
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) |
36 | | negeq 8091 |
. . . . . . . . 9
⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) |
37 | | zcn 9196 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
38 | 37 | negnegd 8200 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
39 | 36, 38 | sylan9eqr 2221 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥) |
40 | 39 | eqcomd 2171 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
41 | 40, 18 | syl 14 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜃)) |
42 | 41 | bicomd 140 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃 ↔ 𝜑)) |
43 | 35, 42 | rspcdv 2833 |
. . . 4
⊢ (𝑥 ∈ ℤ →
(∀𝑦 ∈ ℤ
𝜃 → 𝜑)) |
44 | 43 | com12 30 |
. . 3
⊢
(∀𝑦 ∈
ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑)) |
45 | 44 | ralrimiv 2538 |
. 2
⊢
(∀𝑦 ∈
ℤ 𝜃 →
∀𝑥 ∈ ℤ
𝜑) |
46 | | zindd.5 |
. . 3
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
47 | 46 | rspccv 2827 |
. 2
⊢
(∀𝑥 ∈
ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂)) |
48 | 34, 45, 47 | 3syl 17 |
1
⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |